Squared Hopf algebras and reconstruction theorems
Lyubashenko, Volodymyr
Banach Center Publications, Tome 38 (1997), p. 111-137 / Harvested from The Polish Digital Mathematics Library

Given an abelian 𝑉-linear rigid monoidal category 𝑉, where 𝑉 is a perfect field, we define squared coalgebras as objects of cocompleted 𝑉 ⨂ 𝑉 (Deligne's tensor product of categories) equipped with the appropriate notion of comultiplication. Based on this, (squared) bialgebras and Hopf algebras are defined without use of braiding. If 𝑉 is the category of 𝑉-vector spaces, squared (co)algebras coincide with conventional ones. If 𝑉 is braided, a braided Hopf algebra can be obtained from a squared one. Reconstruction theorems give equivalence of squared co- (bi-, Hopf) algebras in 𝑉 and corresponding fibre functors to 𝑉 (which is not the case with the usual definitions). Finally, squared quasitriangular Hopf coalgebra is a solution to the problem of defining quantum groups in braided categories.

Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:252188
@article{bwmeta1.element.bwnjournal-article-bcpv40z1p111bwm,
     author = {Lyubashenko, Volodymyr},
     title = {Squared Hopf algebras and reconstruction theorems},
     journal = {Banach Center Publications},
     volume = {38},
     year = {1997},
     pages = {111-137},
     zbl = {0904.16017},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv40z1p111bwm}
}
Lyubashenko, Volodymyr. Squared Hopf algebras and reconstruction theorems. Banach Center Publications, Tome 38 (1997) pp. 111-137. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv40z1p111bwm/

[000] [1] P. Deligne, phCatégories tannakiennes, in: The Grothendieck Festschrift, Vol. II, Progress in Math. 87, Boston, Basel, Berlin: Birkhäuser, 1991, 111-195.

[001] [2] V. G. Drinfeld, phQuantum groups, Proceedings of the ICM, AMS, Providence, R.I. 1 (1987), 798-820.

[002] [3] A. Grothendieck and J. L. Verdier, phPréfaisceuax, in: Théorie des topos et cohomologie étale des schémas (SGA 4), Lect. Notes Math. 269, Berlin, Heidelberg, New York: Springer-Verlag, 1972, 1-217.

[003] [4] L. Hlavaty, phQuantized braided groups, J. Math. Phys. 35 (1994), no. 5, 2560-2569. | Zbl 0810.17007

[004] [5] S. MacLane, phCategories for the Working Mathematician, Springer-Verlag, 1971.

[005] [6] B. Pareigis, phReconstruction of hidden symmetries, preprint 1994.

[006] [7] N. Saavedra Rivano, phCatégories Tannakiennes, Lect. Notes Math. 265, Berlin, Heidelberg, New York: Springer-Verlag, 1972.

[007] [8] P. Schauenburg, phTannaka duality for Arbitrary Hopf Algebras, Algebra-Berichte 66, München: R. Fisher, 1992.