The singularity structureοf the Yang-Mills configuration space
Fuchs, Jürgen
Banach Center Publications, Tome 38 (1997), p. 287-299 / Harvested from The Polish Digital Mathematics Library

The geometric description of Yang–Mills theories and their configuration space is reviewed. The presence of singularities in M is explained and some of their properties are described. The singularity structure is analysed in detail for structure group SU(2). This review is based on [28].

Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:208668
@article{bwmeta1.element.bwnjournal-article-bcpv39z1p287bwm,
     author = {Fuchs, J\"urgen},
     title = {The singularity structure$\omicron$f the Yang-Mills configuration space},
     journal = {Banach Center Publications},
     volume = {38},
     year = {1997},
     pages = {287-299},
     zbl = {0917.53005},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv39z1p287bwm}
}
Fuchs, Jürgen. The singularity structureοf the Yang-Mills configuration space. Banach Center Publications, Tome 38 (1997) pp. 287-299. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv39z1p287bwm/

[000] [1] A. Yu. Alekseev and V. Schomerus, Representation theory of Chern–Simons observables, preprint q-alg/9503016.

[001] [2] L. Alvarez-Gaumé and P. Ginsparg, The topological meaning of non-abelian anomalies, Nuclear Phys. B 243 (1984), 449. | Zbl 0579.58038

[002] [3] J. M. Arms, The structure of the solution set for the Yang–Mills equations, Math. Proc. Cambridge Philos. Soc. 90 (1981), 361.

[003] [4] J. M. Arms, J. E. Marsden and V. Moncrief, Symmetry and bifurcations of momentum mappings, Comm. Math. Phys. 78 (1981), 455. | Zbl 0486.58008

[004] [5] A. Ashtekar and J. Lewandowski, Differential geometry on the space of connections via graphs and projective limits, preprint hep-th/9412073.

[005] [6] A. Ashtekar, D. Marol f and J. Mourão, Integration on the space of connections modulo gauge transformations, preprint gr-qc/9403042.

[006] [7] M. Asorey, F. Falceto, J. L. López and G. Luzón, Nodes, monopoles and confinement in 2+1-dimensional gauge theories, Phys. Lett. B 349 (1995), 125. | Zbl 0840.58058

[007] [8] M. Asorey and P. K. Mitter, Regularized, continuum Yang–Mills process and Feynman–Kac functional integral, Comm. Math. Phys. 80 (1981), 43. | Zbl 0476.58008

[008] [9] M. Asorey and P. K. Mitter, Cohomology of the Yang–Mills gauge orbit space and dimensional reduction, Ann. Inst. H. Poincaré Phys. Théor. A45 (1986), 61. | Zbl 0596.55003

[009] [10] M. Atiyah and J. Jones, Topological aspects of Yang–Mills theory, Comm. Math. Phys. 61 (1978), 97. | Zbl 0387.55009

[010] [11] M. Audin, The Topology of Torus Actions on Symplectic Manifolds, Birkhäuser, Basel 1991.

[011] [12] P. van Baal, More (thoughts on) Gribov copies, Nuclear Phys. B 369 (1992), 259.

[012] [13] P. van Baal and B. van den Heuvel, Zooming in on the SU(2) fundamental domain, Nuclear Phys. B 417 (1994), 215. | Zbl 1007.81511

[013] [14] O. Babelon and C. M. Viallet, The geometrical interpretation of the Faddeev–Popov determinant, Phys. Lett. B 85 (1979), 246.

[014] [15] O. Babelon and C. M. Viallet, On the Riemannian geometry of the configuration space of gauge theories, Comm. Math. Phys. 81 (1981), 515. | Zbl 0495.58003

[015] [16] J. C. Baez, Generalized measures in gauge theory, Lett. Math. Phys. 31 (1994), 213. | Zbl 0798.58009

[016] [17] R. Bott, Morse theory and the Yang–Mills equations, in: Differential geometrical methods in mathematical physics, Lecture Notes in Math. 836, Springer, Berlin, 1980, p. 269. | Zbl 0486.58009

[017] [18] J. P. Brasselet and M. Ferrarotti, Regular differential forms on stratified spaces, preprint Pisa, Sept. 1992. | Zbl 0837.55003

[018] [19] A. Chodos, Canonical quantization of non-Abelian gauge theories in the axial gauge, Phys. Rev. D (3) 17 (1978), 2624.

[019] [20] M. Daniel and C. M. Viallet, The gauge fixing problem around classical solutions of the Yang–Mills theory, Phys. Lett. B 76 (1978), 458.

[020] [21] G. Dell’Antonio and D. Zwanziger, Every gauge orbit passes inside the Gribov horizon, Comm. Math. Phys. 138 (1991), 291. | Zbl 0726.53067

[021] [22] S. K. Donaldson, Polynomial invariants for smooth four-manifolds, Topology 29 (1990), 257. | Zbl 0715.57007

[022] [23] S. K. Donaldson and P. B. Kronheimer, The Geometry of Four-Manifolds, Clarendon Press, Oxford 1990. | Zbl 0820.57002

[023] [24] J. Eichhorn, T. Friedrich, Seiberg–Witten theory, this volume.

[024] [25] M. Ferrarotti, Some results about integration on regular stratified sets, Ann. Mat. Pura Appl. (4) CL (1988), 263. | Zbl 0691.58017

[025] [26] A. E. Fischer, Resolving the singularities in the space of Riemannian geometries, J. Math. Phys. 27 (1986), 718. | Zbl 0604.58007

[026] [27] D. S. Freed, On determinant line bundles, in: Mathematical Aspects of String Theory, S. T. Yau, ed., World Scientific, Singapore, 1987, p. 189.

[027] [28] J. Fuchs, M. G. Schmidt and C. Schweigert, On the configuration space of gauge theories, Phys. B 426 (1994), 107. | Zbl 1049.81556

[028] [29] H. B. Gao and H. Römer, Some features of blown-up non-linear σ-models, Classical Quantum Gravity 12 (1995), 17. | Zbl 0817.53043

[029] [30] M. J. Gotay, Reduction of homogeneous Yang–Mills fields, J. Geom. Phys. 6 (1989), 349. | Zbl 0692.53041

[030] [31] V. Gribov, Quantization of nonabelian gauge theories, Nuclear Phys. B 139 (1978), 1.

[031] [32] P. Griffiths and J. Harris, Principles of Algebraic Geometry, Wiley Interscience, New York 1978. | Zbl 0408.14001

[032] [33] A. Heil, A. Kersch, N. Papadopoulos, B. Reifenhäuser and F. Scheck, Anomalies from nonfree action of the gauge group, Ann. Physics 200 (1990), 206. | Zbl 0719.53064

[033] [34] A. Heil, A. Kersch, N. Papadopoulos, B. Reifenhäuser and F. Scheck, Structure of the space of reducible connections for Yang–Mills theories, J. Geom. Phys. 7 (1990), 489. | Zbl 0759.53019

[034] [35] W. Kondracki and J. S. Rogulski, On the stratification of the orbit space for the action of automorphisms on connections, Dissertationes Math. (Rozprawy Mat.) CCL (1986), 1. | Zbl 0614.57025

[035] [36] W. Kondracki and P. Sadowski, Geometric structure on the orbit space of gauge connections, J. Geom. Phys. 3 (1986), 421. | Zbl 0624.53055

[036] [37] E. Langmann, M. Salmhofer and A. Kovner, Consistent axial-like gauge fixing on hypertori, Modern Phys. Lett. A 9 (1994), 2913. | Zbl 1020.58503

[037] [38] P. K. Mitter and C. M. Viallet, On the bundle of connections and the gauge orbit manifold in Yang–Mills theory, Comm. Math. Phys. 79 (1981), 457. | Zbl 0474.58004

[038] [39] V. Moncrief, Reduction of the Yang–Mills equations, in: Differential geometrical methods in mathematical physics, Lecture Notes in Math. 836, Springer, Berlin, 1980, p. 276. | Zbl 0489.58006

[039] [40] M. Narasimhan and T. Ramadas, Geometry of SU(2) gauge fields, Comm. Math. Phys. 67 (1979), 121. | Zbl 0418.53029

[040] [41] L. Rozansky, A contribution of the trivial connection to the Jones polynomial and Witten’s invariant of 3d manifolds I. and II., preprints hep-th/9401069 and hep-th/9403021.

[041] [42] N. Seiberg, Exact results on the space of vacua of four-dimensional SUSY gauge theories, Phys. Rev. D (3) 49 (1994), 6857.

[042] [43] M. A. Semenov-Tyan-Shanskiĭ and V. A. Franke, A variational principle for the Lorentz condition and restriction of the domain of path integration in non-abelian gauge theory (Russian), Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 120 (1982), 159; transl. J. Soviet. Math. 34 (1986), 1999.

[043] [44] I. M. Singer, Some remarks on the Gribov ambiguity, Comm. Math. Phys. 60 (1978), 7. | Zbl 0379.53009

[044] [45] I. M. Singer, The geometry of the orbit space for nonabelian gauge theories, Phys. Scripta T 24 (1981), 817. | Zbl 1063.81623

[045] [46] K. K. Uhlenbeck, Removable singularities in Yang–Mills fields, Comm. Math. Phys. 83 (1982), 11. | Zbl 0491.58032

[046] [47] E. Witten, Monopoles and four manifolds, Math. Res. Lett. 1 (1994), 769. | Zbl 0867.57029

[047] [48] C. N. Yang and R. M. Mills, Conservation of isotopic spin and isotopic gauge invariance, Phys. Rev. (2) 96 (1954), 191. | Zbl 06538052

[048] [49] D. Zwanziger, Non-perturbative modification of the Faddeev–Popov formula and banishment of the naive vacuum, Nuclear Phys. B 209 (1982), 336.