Nous démontrons une version quantitative d’un résultat de Furstenberg [20] et Deligne [14] : la diagonale d’une série formelle algébrique de plusieurs variables à coefficients dans un corps de caractéristique non nulle est une série formelle algébrique d’une variable. Comme conséquence, nous obtenons que, pour tout nombre premier , la réduction modulo de la diagonale d’une série formelle algébrique de plusieurs variables à coefficients entiers est une série formelle algébrique de degré au plus et de hauteur au plus , où est une constante effective ne dépendant que du nombre de variables, du degré de et de la hauteur de . Cela répond à une question soulevée par Deligne [14].
We prove a quantitative version of a result of Furstenberg [20] and Deligne [14] stating that the diagonal of a multivariate algebraic power series with coefficients in a field of positive characteristic is algebraic. As a consequence, we obtain that for every prime the reduction modulo of the diagonal of a multivariate algebraic power series with integer coefficients is an algebraic power series of degree at most and height at most , where is an effective constant that only depends on the number of variables, the degree of and the height of . This answers a question raised by Deligne [14].
@article{ASENS_2013_4_46_6_963_0, author = {Adamczewski, Boris and Bell, Jason P.}, title = {Diagonalization and rationalization of algebraic Laurent series}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, volume = {46}, year = {2013}, pages = {963-1004}, doi = {10.24033/asens.2207}, language = {en}, url = {http://dml.mathdoc.fr/item/ASENS_2013_4_46_6_963_0} }
Adamczewski, Boris; Bell, Jason P. Diagonalization and rationalization of algebraic Laurent series. Annales scientifiques de l'École Normale Supérieure, Tome 46 (2013) pp. 963-1004. doi : 10.24033/asens.2207. http://gdmltest.u-ga.fr/item/ASENS_2013_4_46_6_963_0/
[1] On vanishing coefficients of algebraic power series over fields of positive characteristic, Invent. Math. 187 (2012), 343-393. | MR 2885622
& ,[2] Transcendence of formal power series with rational coefficients, Theoret. Comput. Sci. 218 (1999), 143-160. | MR 1687784
,[3] Transcendence of binomial and Lucas' formal power series, J. Algebra 210 (1998), 577-592. | MR 1662292
, & ,[4] -functions and geometry, Aspects of Mathematics, E13, Friedr. Vieweg & Sohn, 1989. | MR 990016
,[5] Congruence properties of coefficients of solutions of Picard-Fuchs equations, Groupe de travail d'analyse ultramétrique 14 (1986-1987), 1-6.
,[6] A family of surfaces and , J. reine angew. Math. 351 (1984), 42-54. | MR 749676
& ,[7] Analytic continuation of diagonals and Hadamard compositions of multiple power series, Trans. Amer. Math. Soc. 44 (1938), 1-7. | MR 1501956
& ,[8] Diagonales de fractions rationnelles et équations différentielles, Groupe de travail d'analyse ultramétrique 10 (1982-1983), 1-10.
,[9] Diagonales de fractions rationnelles et équations de Picard-Fuchs, Groupe de travail d'analyse ultramétrique 12 (1984-1985), 1-12. | Numdam | MR 848993
,[10] Diagonales de fractions rationnelles, in Séminaire de Théorie des Nombres, Paris 1986-87, Progr. Math. 75, Birkhäuser, 1988, 65-90. | MR 990506
,[11] Globally bounded solutions of differential equations, in Analytic number theory (Tokyo, 1988), Lecture Notes in Math. 1434, Springer, 1990, 45-64. | MR 1071744
,[12] Suites algébriques, automates et substitutions, Bull. Soc. Math. France 108 (1980), 401-419. | MR 614317
, , & ,[13] Arithmetic properties of Apéry-like numbers, preprint arXiv:1310.4131.
,[14] Intégration sur un cycle évanescent, Invent. Math. 76 (1984), 129-143.
,[15] Algebraic power series and diagonals, J. Number Theory 26 (1987), 46-67. | MR 883533
& ,[16] An introduction to -functions, Annals of Math. Studies 133, Princeton Univ. Press, 1994. | MR 1274045
, & ,[17] Commutative algebra, Graduate Texts in Math. 150, Springer, 1995. | MR 1322960
,[18] Irrationalité de valeurs de zêta (d'après Apéry, Rivoal, ...), Séminaire Bourbaki, vol. 2002/03, exp. no 910, Astérisque 294 (2004), 27-62. | Numdam | MR 2111638
,[19] Analytic models and ambiguity of context-free languages, Theoret. Comput. Sci. 49 (1987), 283-309. | MR 909335
,[20] Algebraic functions over finite fields, J. Algebra 7 (1967), 271-277. | MR 215820
,[21] Algebraic elements in formal power series rings, Israel J. Math. 63 (1988), 281-288. | MR 969943
,[22] Periods, in Mathematics unlimited-2001 and beyond, Springer, 2001, 771-808. | MR 1852188
& ,[23] The diagonal of a -finite power series is -finite, J. Algebra 113 (1988), 373-378. | MR 929767
,[24] Rational functions, diagonals, automata and arithmetic, in Number theory (Banff, AB, 1988), de Gruyter, 1990, 339-358. | MR 1106672
& ,[25] Einheiten und Divisorklassen in endlich erzeugbaren Körpern, Jber. Deutsch. Math. Verein 60 (1957), 1-21. | MR 104652
,[26] Suites automatiques à multi-indices, Séminaire de Théorie des Nombres de Bordeaux (1986-1987), exposé 4, 1-27. | MR 1050262
,[27] Generalized Newton-Puiseux expansion and Abhyankar-Moh semigroup theorem, Invent. Math. 74 (1983), 149-157. | MR 722730
,[28] Algebraic functions over a field of positive characteristic and Hadamard products, J. London Math. Soc. 37 (1988), 395-403. | MR 939116
& ,[29] Generating functions, in Studies in combinatorics, MAA Stud. Math. 17, Math. Assoc. America, 1978, 100-141. | MR 513004
,[30] Differentiably finite power series, European J. Combin. 1 (1980), 175-188. | MR 587530
,[31] Enumerative combinatorics. Vol. 2, Cambridge Studies in Advanced Math. 62, Cambridge Univ. Press, 1999. | MR 1676282
,[32] Transcendence of periods: the state of the art, Pure Appl. Math. Q. 2 (2006), 435-463. | MR 2251476
,[33] Elliptic functions and transcendence, in Surveys in number theory, Dev. Math. 17, Springer, 2008, 143-188. | MR 2462949
,[34] On the transcendence of certain series, J. Algebra 121 (1989), 364-369. | MR 992771
& ,