On the linearization theorem for proper Lie groupoids
[Sur le théorème de linéarisation pour les groupoïdes de Lie propres]
Crainic, Marius ; Struchiner, Ivan
Annales scientifiques de l'École Normale Supérieure, Tome 46 (2013), p. 723-746 / Harvested from Numdam

Nous revisitons les théorèmes de linéarisation pour les groupoïdes de Lie propres autour des orbites générales. Dans le cas du point fixe (connu sous le nom de théorème de Zung), nous donnons une preuve plus courte et plus géométrique, basée sur l'argument de déformation de Moser. Le passage au cas général est décrit de façon plus conceptuelle, comme manifestation de l'invariance de Morita. Nous clarifions également l'énoncé précis du théorème de linéarisation (la littérature sur ce sujet est assez confuse).

We revisit the linearization theorems for proper Lie groupoids around general orbits (statements and proofs). In the fixed point case (known as Zung's theorem) we give a shorter and more geometric proof, based on a Moser deformation argument. The passage to general orbits (Weinstein) is given a more conceptual interpretation: as a manifestation of Morita invariance. We also clarify the precise statements of the Linearization Theorem (there has been some confusion on this, which has propagated throughout the existing literature).

Publié le : 2013-01-01
DOI : https://doi.org/10.24033/asens.2200
Classification:  58H05,  57R99,  57S15,  53C12
Mots clés: groupoïdes de Lie, actions propres, linéarisation, feuilletages, stabilité de Reeb local
@article{ASENS_2013_4_46_5_723_0,
     author = {Crainic, Marius and Struchiner, Ivan},
     title = {On the linearization theorem for proper Lie groupoids},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     volume = {46},
     year = {2013},
     pages = {723-746},
     doi = {10.24033/asens.2200},
     language = {en},
     url = {http://dml.mathdoc.fr/item/ASENS_2013_4_46_5_723_0}
}
Crainic, Marius; Struchiner, Ivan. On the linearization theorem for proper Lie groupoids. Annales scientifiques de l'École Normale Supérieure, Tome 46 (2013) pp. 723-746. doi : 10.24033/asens.2200. http://gdmltest.u-ga.fr/item/ASENS_2013_4_46_5_723_0/

[1] H. Bursztyn & A. Weinstein, Picard groups in Poisson geometry, Mosc. Math. J. 4 (2004), 39-66. | MR 2074983

[2] J. F. Conn, Normal forms for smooth Poisson structures, Ann. of Math. 121 (1985), 565-593. | MR 794374

[3] M. Crainic, Differentiable and algebroid cohomology, van Est isomorphisms, and characteristic classes, Comment. Math. Helv. 78 (2003), 681-721. | MR 2016690

[4] M. Crainic & R. L. Fernandes, A geometric approach to Conn's linearization theorem, Ann. of Math. 173 (2011), 1121-1139. | MR 2776372

[5] M. Crainic, J. N. Mestre & I. Struchiner, Deformations of Lie groupoids, work in progress.

[6] M. Crainic & I. Mărcuț, A normal form theorem around symplectic leaves, J. Differential Geom. 92 (2012), 417-461. | MR 3005059

[7] J.-P. Dufour & N. T. Zung, Poisson structures and their normal forms, Progress in Math. 242, Birkhäuser, 2005. | MR 2178041

[8] J. J. Duistermaat & J. A. C. Kolk, Lie groups, Universitext, Springer, 2000. | MR 1738431

[9] K. Grove & H. Karcher, How to conjugate C 1 -close group actions, Math. Z. 132 (1973), 11-20. | MR 356104

[10] S. Lang, Differential and Riemannian manifolds, third éd., Graduate Texts in Math. 160, Springer, 1995. | MR 1335233

[11] K. C. H. Mackenzie & P. Xu, Classical lifting processes and multiplicative vector fields, Quart. J. Math. Oxford Ser. 49 (1998), 59-85. | MR 1617335

[12] I. Moerdijk & J. Mrčun, Introduction to foliations and Lie groupoids, Cambridge Studies in Advanced Math. 91, Cambridge Univ. Press, 2003. | MR 2012261

[13] R. S. Palais, Equivalence of nearby differentiable actions of a compact group, Bull. Amer. Math. Soc. 67 (1961), 362-364. | MR 130321

[14] R. S. Palais & T. E. Stewart, Deformations of compact differentiable transformation groups, Amer. J. Math. 82 (1960), 935-937. | MR 120652

[15] H. Posthuma, M. Pflaum & X. Tang, Geometry of orbit spaces of proper Lie groupoids, to appear in J. reine angew. Math.

[16] G. Trentinaglia, Tannaka duality for proper Lie groupoids, J. Pure Appl. Algebra 214 (2010), 750-768. | MR 2580655

[17] A. Weinstein, Linearization problems for Lie algebroids and Lie groupoids, Lett. Math. Phys. 52 (2000), 93-102. | MR 1800493

[18] A. Weinstein, Linearization of regular proper groupoids, J. Inst. Math. Jussieu 1 (2002), 493-511. | MR 1956059

[19] N. T. Zung, Proper groupoids and momentum maps: linearization, affinity, and convexity, Ann. Sci. École Norm. Sup. 39 (2006), 841-869. | Numdam | MR 2292634