The brownian cactus I. Scaling limits of discrete cactuses
Curien, Nicolas ; Le Gall, Jean-François ; Miermont, Grégory
Annales de l'I.H.P. Probabilités et statistiques, Tome 49 (2013), p. 340-373 / Harvested from Numdam

Le cactus d’un graphe pointé est un certain arbre discret associé à ce graphe. De façon similaire, à tout espace métrique géodésique pointé E, on peut associer un -arbre appelé cactus continu de E. Sous des hypothèses générales, nous montrons que le cactus de cartes planaires aléatoires - dont la loi est déterminée par des poids de Boltzmann, et qui sont conditionnées à avoir un grand nombre fixé de sommets - converge en loi vers un espace limite appelé cactus brownien, au sens de la topologie de Gromov-Hausdorff. De plus, le cactus brownien peut être interprété comme le cactus continu de la carte brownienne.

The cactus of a pointed graph is a discrete tree associated with this graph. Similarly, with every pointed geodesic metric space E, one can associate an -tree called the continuous cactus of E. We prove under general assumptions that the cactus of random planar maps distributed according to Boltzmann weights and conditioned to have a fixed large number of vertices converges in distribution to a limiting space called the Brownian cactus, in the Gromov-Hausdorff sense. Moreover, the Brownian cactus can be interpreted as the continuous cactus of the so-called Brownian map.

Publié le : 2013-01-01
DOI : https://doi.org/10.1214/11-AIHP460
Classification:  60F17,  60D05
@article{AIHPB_2013__49_2_340_0,
     author = {Curien, Nicolas and Le Gall, Jean-Fran\c cois and Miermont, Gr\'egory},
     title = {The brownian cactus I. Scaling limits of discrete cactuses},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     volume = {49},
     year = {2013},
     pages = {340-373},
     doi = {10.1214/11-AIHP460},
     mrnumber = {3088373},
     zbl = {1275.60035},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIHPB_2013__49_2_340_0}
}
Curien, Nicolas; Le Gall, Jean-François; Miermont, Grégory. The brownian cactus I. Scaling limits of discrete cactuses. Annales de l'I.H.P. Probabilités et statistiques, Tome 49 (2013) pp. 340-373. doi : 10.1214/11-AIHP460. http://gdmltest.u-ga.fr/item/AIHPB_2013__49_2_340_0/

[1] D. Aldous. The continuum random tree I. Ann. Probab. 19 (1991) 1-28. | MR 1085326 | Zbl 0722.60013

[2] J. Ambjørn, B. Durhuus and T. Jonsson. Quantum Geometry. A Statistical Field Theory Approach. Cambridge Monographs on Mathematical Physics. Cambridge Univ. Press, Cambridge, 1997. | MR 1465433 | Zbl 1096.82500

[3] J. Bouttier, P. Di Francesco and E. Guitter. Planar maps as labeled mobiles. Electron. J. Combin. 11 (2004) R69. | MR 2097335 | Zbl 1060.05045

[4] J. Bouttier and E. Guitter. Confluence of geodesic paths and separating loops in large planar quadrangulations. J. Stat. Mech. Theory Exp. (2009) P03001. | MR 2495866

[5] D. Burago, Y. Burago and S. Ivanov. A Course in Metric Geometry. Graduate Studies in Mathematics 33. Amer. Math. Soc., Boston, 2001. | MR 1835418 | Zbl 0981.51016

[6] S. N. Evans. Probability and Real Trees. Lecture Notes in Math. 1920. Springer, Berlin, 2008. | MR 2351587 | Zbl 1139.60006

[7] S. N. Evans, J. W. Pitman and A. Winter. Rayleigh processes, real trees, and root growth with re-grafting. Probab. Theory Related Fields 134 (2006) 81-126. | MR 2221786 | Zbl 1086.60050

[8] C. Favre and M. Jonsson. The Valuative Tree. Lecture Notes in Math. 1853. Springer, Berlin, 2004. | MR 2097722 | Zbl 1064.14024

[9] M. Gromov. Metric Structures for Riemannian and Non-Riemannian Spaces. Birkhäuser, Boston, 2001. | MR 1699320 | Zbl 0953.53002

[10] N. C. Jain and S. J. Taylor. Local asymptotic laws for Brownian motion. Ann. Probab. 1 (1973) 527-549. | MR 365732 | Zbl 0261.60053

[11] S. K. Lando and A. K. Zvonkin. Graphs on Surfaces and Their Applications. Encyclopedia of Mathematical Sciences 141. Springer, Berlin, 2004. | MR 2036721 | Zbl 1040.05001

[12] J. F. Le Gall. Random trees and applications. Probab. Sur. 2 (2005) 245-311. | MR 2203728 | Zbl 1189.60161

[13] J. F. Le Gall. The topological structure of scaling limits of large planar maps. Invent. Math. 169 (2007) 621-670. | MR 2336042 | Zbl 1132.60013

[14] J. F. Le Gall. Geodesics in large planar maps and in the Brownian map. Acta Math. 205 (2010) 287-360. | MR 2746349 | Zbl 1214.53036

[15] J. F. Le Gall. Uniqueness and universality of the Brownian map. Preprint. Available at arXiv:1105.4842. | MR 3112934 | Zbl 1282.60014

[16] J. F. Le Gall and F. Paulin. Scaling limits of bipartite planar maps are homeomorphic to the 2-sphere. Geomet. Funct. Anal. 18 (2008) 893-918. | MR 2438999 | Zbl 1166.60006

[17] J. F. Marckert and G. Miermont. Invariance principles for random bipartite planar maps. Ann. Probab. 35 (2007) 1642-1705. | MR 2349571 | Zbl 1208.05135

[18] J. F. Marckert and A. Mokkadem. Limit of normalized quadrangulations. The Brownian map. Ann. Probab. 34 (2006) 2144-2202. | MR 2294979 | Zbl 1117.60038

[19] G. Miermont. An invariance principle for random planar maps. In Fourth Colloquium on Mathematics and Computer Science, Algorithms, Trees, Combinatorics and Probabilities 39-57 (electronic). Discrete Math. Theor. Comput. Sci. Proc., AG. Assoc. Discrete Math. Theor. Comput. Sci., Nancy, 2006. | MR 2509622 | Zbl 1195.60049

[20] G. Miermont. Invariance principles for spatial multitype Galton-Watson trees. Ann. Inst. Henri Poincaré Probab. Stat. 44 (2008) 1128-1161. | Numdam | MR 2469338 | Zbl 1178.60058

[21] G. Miermont. The Brownian map is the scaling limit of uniform random plane quadrangulations. Preprint. Available at arXiv:1104.1606. | MR 3070569 | Zbl 1278.60124

[22] G. Miermont and M. Weill. Radius and profile of random planar maps with faces of arbitrary degrees. Electron. J. Probab. 13 (2008) 79-106. | MR 2375600 | Zbl 1190.60024

[23] D. Revuz and M. Yor. Continuous Martingales and Brownian Motion. Springer, Berlin, 1991. | MR 1083357 | Zbl 0917.60006

[24] O. Schramm. Conformally invariant scaling limits: An overview and a collection of problems. In Proceedings of the International Congress of Mathematicians (Madrid, 2006), Vol. I 513-543. European Math. Soc., Zürich, 2007. | MR 2334202 | Zbl 1131.60088

[25] W. T. Tutte. A census of planar maps. Canad. J. Math. 15 (1963) 249-271. | MR 146823 | Zbl 0115.17305