Universality of the asymptotics of the one-sided exit problem for integrated processes
Aurzada, Frank ; Dereich, Steffen
Annales de l'I.H.P. Probabilités et statistiques, Tome 49 (2013), p. 236-251 / Harvested from Numdam

Nous considérons le problème unilatéral de sortie - ou problème unilatéral de barrière - pour des intégrales (α-fractionnelles) de marches aléatoires et de processus de Lévy. Notre résultat principal est l’existence d’une fonction positive, décroissante αθ(α) telle que la probabilité qu’une intégrale d’un processus de Lévy α-fractionnel quelconque (ou marche aléatoire) avec certains moments exponentiels finis reste en dessous d’un niveau fixe jusqu’à un temps T se comporte comme T -θ(α)+o(1) pour T grand. Nous analysons aussi la possibilité de remplacer le niveau fixe par une barrière différente qui satisfait certaines conditions de croissance (marge mouvante). Cela, en particulier, étend le résultat de Sinai sur l’exposant de survie d’une marche aléatoire simple intégrée à des marches aléatoires générales de moment exponentiel fini.

We consider the one-sided exit problem - also called one-sided barrier problem - for (α-fractionally) integrated random walks and Lévy processes. Our main result is that there exists a positive, non-increasing function αθ(α) such that the probability that any α-fractionally integrated centered Lévy processes (or random walk) with some finite exponential moment stays below a fixed level until time T behaves as T -θ(α)+o(1) for large T. We also investigate when the fixed level can be replaced by a different barrier satisfying certain growth conditions (moving boundary). This, in particular, extends Sinai’s result on the survival exponent θ(1)=1/4 for the integrated simple random walk to general random walks with some finite exponential moment.

Publié le : 2013-01-01
DOI : https://doi.org/10.1214/11-AIHP427
Classification:  60G51,  60J65,  60G15,  60G18
@article{AIHPB_2013__49_1_236_0,
     author = {Aurzada, Frank and Dereich, Steffen},
     title = {Universality of the asymptotics of the one-sided exit problem for integrated processes},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     volume = {49},
     year = {2013},
     pages = {236-251},
     doi = {10.1214/11-AIHP427},
     mrnumber = {3060155},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIHPB_2013__49_1_236_0}
}
Aurzada, Frank; Dereich, Steffen. Universality of the asymptotics of the one-sided exit problem for integrated processes. Annales de l'I.H.P. Probabilités et statistiques, Tome 49 (2013) pp. 236-251. doi : 10.1214/11-AIHP427. http://gdmltest.u-ga.fr/item/AIHPB_2013__49_1_236_0/

[1] R. F. Bass, N. Eisenbaum and Z. Shi. The most visited sites of symmetric stable processes. Probab. Theory Related Fields 116 (2000) 391-404. | MR 1749281 | Zbl 0955.60073

[2] G. Baxter and M. D. Donsker. On the distribution of the supremum functional for processes with stationary independent increments. Trans. Amer. Math. Soc. 85 (1957) 73-87. | MR 84900 | Zbl 0078.32002

[3] J. Bertoin. Lévy Processes. Cambridge Tracts in Mathematics 121. Cambridge Univ. Press, Cambridge, 1996. | MR 1406564 | Zbl 0861.60003

[4] J. Bertoin. The inviscid Burgers equation with Brownian initial velocity. Comm. Math. Phys. 193 (1998) 397-406. | MR 1618139 | Zbl 0917.60063

[5] N. H. Bingham. Maxima of sums of random variables and suprema of stable processes. Z. Wahrsch. Verw. Gebiete 26 (1973) 273-296. | MR 415780 | Zbl 0238.60036

[6] F. Caravenna and J.-D. Deuschel. Pinning and wetting transition for (1+1)-dimensional fields with Laplacian interaction. Ann. Probab. 36 (2008) 2388-2433. | MR 2478687 | Zbl 1179.60066

[7] R. A. Doney. Spitzer's condition and ladder variables in random walks. Probab. Theory Related Fields 101 (1995) 577-580. | MR 1327226 | Zbl 0818.60060

[8] A. Dembo, B. Poonen, Q.-M. Shao and O. Zeitouni. Random polynomials having few or no real zeros. J. Amer. Math. Soc. 15 (2002) 857-892 (electronic). | MR 1915821 | Zbl 1002.60045

[9] J. D. Esary, F. Proschan and D. W. Walkup. Association of random variables, with applications. Ann. Math. Statist. 38 (1967) 1466-1474. | MR 217826 | Zbl 0183.21502

[10] W. Feller. An Introduction to Probability Theory and Its Applications II, 2nd edition. Wiley, New York, 1971. | MR 270403 | Zbl 0138.10207

[11] M. Goldman. On the first passage of the integrated Wiener process. Ann. Math. Statist. 42 (1971) 2150-2155. | MR 297017 | Zbl 0271.60049

[12] P. Groeneboom, G. Jongbloed and J. A. Wellner. Integrated Brownian motion, conditioned to be positive. Ann. Probab. 27 (1999) 1283-1303. | MR 1733148 | Zbl 0983.60078

[13] Y. Isozaki and S. Watanabe. An asymptotic formula for the Kolmogorov diffusion and a refinement of Sinai's estimates for the integral of Brownian motion. Proc. Japan Acad. Ser. A Math. Sci. 70 (1994) 271-276. | MR 1313176 | Zbl 0820.60066

[14] J. Komlós, P. Major and G. Tusnády. An approximation of partial sums of independent RV ’s and the sample DF . I. Z. Wahrsch. Verw. Gebiete 32 (1975) 111-131. | MR 375412 | Zbl 0308.60029

[15] A. Lachal. Sur le premier instant de passage de l'intégrale du mouvement Brownien. Ann. Inst. Henri Poincaré Probab. Stat. 27 (1991) 385-405. | Numdam | MR 1131839 | Zbl 0747.60075

[16] A. Lachal. Sur les excursions de l'intégrale du mouvement Brownien. C. R. Acad. Sci. Paris Sér. I Math. 314 (1992) 1053-1056. | MR 1168534 | Zbl 0757.60075

[17] W. V. Li and Q.-M. Shao. A normal comparison inequality and its applications. Probab. Theory Related Fields 122 (2002) 494-508. | MR 1902188 | Zbl 1004.60031

[18] W. V. Li and Q.-M. Shao. Lower tail probabilities for Gaussian processes. Ann. Probab. 32 (2004) 216-242. | MR 2040781 | Zbl 1052.60028

[19] W. V. Li and Q.-M. Shao. Recent developments on lower tail probabilities for Gaussian processes. Cosmos 1 (2005) 95-106. | MR 2329259

[20] M. Lifshits. Gaussian Random Functions. Mathematics and Its Applications. Kluwer Academic, Dordrecht, 1995. | MR 1472736 | Zbl 0832.60002

[21] S. N. Majumdar. Persistence in nonequilibrium systems. Current Sci. 77 (1999) 370-375.

[22] H. P. Mckean, Jr. A winding problem for a resonator driven by a white noise. J. Math. Kyoto Univ. 2 (1963) 227-235. | MR 156389 | Zbl 0119.34701

[23] G. M. Molchan. Maximum of a fractional Brownian motion: Probabilities of small values. Comm. Math. Phys. 205 (1999) 97-111. | MR 1706900 | Zbl 0942.60065

[24] G. M. Molchan. On the maximum of fractional Brownian motion. Teor. Veroyatn. Primen. 44 (1999) 111-115. | MR 1751192 | Zbl 0966.60036

[25] G. M. Molchan. Unilateral small deviations of processes related to the fractional Brownian motion. Stochastic Process. Appl. 118 (2008) 2085-2097. | MR 2462290 | Zbl 1151.60017

[26] I. Monroe. On embedding right continuous martingales in Brownian motion. Ann. Math. Statist. 43 (1972) 1293-1311. | MR 343354 | Zbl 0267.60050

[27] A. A. Novikov. Estimates for and asymptotic behavior of the probabilities of a Wiener process not crossing a moving boundary. Mat. Sb. 110 (1979) 539-550 (in Russian). English translation in: Sb. Math. 38 (1981) 495-505. | MR 562208 | Zbl 0462.60079

[28] J. Obłój. The Skorokhod embedding problem and its offspring. Probab. Surv. 1 (2004) 321-390 (electronic). | MR 2068476 | Zbl 1189.60088

[29] T. Simon. The lower tail problem for homogeneous functionals of stable processes with no negative jumps. ALEA Lat. Am. J. Probab. Math. Stat. 3 (2007) 165-179 (electronic). | MR 2349807 | Zbl 1145.60027

[30] T. Simon. On the Hausdorff dimension of regular points of inviscid Burgers equation with stable initial data. J. Stat. Phys. 131 (2008) 733-747. | MR 2398951 | Zbl 1155.35114

[31] Y. G. Sinai. Distribution of some functionals of the integral of a random walk. Teoret. Mat. Fiz. 90 (1992) 323-353. | MR 1182301 | Zbl 0810.60063

[32] D. Slepian. The one-sided barrier problem for Gaussian noise. Bell System Tech. J. 41 (1962) 463-501. | MR 133183

[33] J. M. Steele. Stochastic Calculus and Financial Applications. Applications of Mathematics 45. Springer, New York, 2001. | MR 1783083 | Zbl 0962.60001

[34] K. Uchiyama. Brownian first exit from and sojourn over one sided moving boundary and application. Z. Wahrsch. Verw. Gebiete 54 (1980) 75-116. | MR 595482 | Zbl 0431.60080

[35] V. Vysotsky. Clustering in a stochastic model of one-dimensional gas. Ann. Appl. Probab. 18 (2008) 1026-1058. | MR 2418237 | Zbl 1141.60068

[36] V. Vysotsky. On the probability that integrated random walks stay positive. Stochastic Process. Appl. 120 (2010) 1178-1193. | MR 2639743 | Zbl 1202.60070