Soit un feuilletage minimal de codimension un transversalement orientable, transversalement analytique réel sur une variété paracompacte. On démontre que le feuilletage est sans holonomie si le groupe fondamental de toute la feuille de est isomorphe à . On démontre aussi que le feuilletage est sans holonomie si le groupe d’homotopie et que le groupe fondamental de toute la feuille de est isomorphe à ().
Let be a transversely orientable transversely real-analytic codimension one minimal foliation of a paracompact manifold . We show that if the fundamental group of each leaf of is isomorphic to , then is without holonomy. We also show that if and the fundamental group of each leaf of is isomorphic to (), then is without holonomy.
@article{AIF_2008__58_2_723_0, author = {Yokoyama, Tomoo and Tsuboi, Takashi}, title = {Codimension one minimal foliations and the fundamental groups of leaves}, journal = {Annales de l'Institut Fourier}, volume = {58}, year = {2008}, pages = {723-731}, doi = {10.5802/aif.2366}, zbl = {1148.53017}, mrnumber = {2410388}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2008__58_2_723_0} }
Yokoyama, Tomoo; Tsuboi, Takashi. Codimension one minimal foliations and the fundamental groups of leaves. Annales de l'Institut Fourier, Tome 58 (2008) pp. 723-731. doi : 10.5802/aif.2366. http://gdmltest.u-ga.fr/item/AIF_2008__58_2_723_0/
[1] Leaf prescriptions for closed -manifolds, Trans. Amer. Math. Soc., Tome 236 (1978), pp. 239-261 | MR 645738 | Zbl 0398.57009
[2] Endsets of exceptional leaves; a theorem of G. Duminy, Foliations: geometry and dynamics (Warsaw, 2000), World Sci. Publ., River Edge, NJ (2002), pp. 225-261 | MR 1882772 | Zbl 1011.57009
[3] Leaves without holonomy, J. London Math. Soc. (2), Tome 16 (1977) no. 3, pp. 548-552 | Article | MR 464259 | Zbl 0381.57007
[4] The surgery -groups of poly-(finite or cyclic) groups, Invent. Math., Tome 91 (1988) no. 3, pp. 559-586 | Article | MR 928498 | Zbl 0657.57015
[5] Structures feuilletées et cohomologie à valeur dans un faisceau de groupoïdes, Comment. Math. Helv., Tome 32 (1958), pp. 248-329 | Article | MR 100269 | Zbl 0085.17303
[6] A stable analytic foliation with only exceptional minimal sets, Dynamical Systems, Springer, Berlin, Heidelberg, New York (Lecture Notes in Math.) Tome 468 (1975), p. 9-10 | Zbl 0309.53053
[7] Vorlesungen uber Topologie, Springer, Berlin Tome I (1923)
[8] Topology of foliations, Trans. Mosc. Math. Soc., Tome 14 (1965), pp. 268-304 (translation from Tr. Mosk. Mat. Obshch. 14, 248-278 (1965)) | MR 200938 | Zbl 0247.57006
[9] On the classification of noncompact surfaces, Trans. Amer. Math. Soc., Tome 106 (1963), pp. 259-269 | Article | MR 143186 | Zbl 0156.22203
[10] On fibering certain foliated manifolds over , Topology, Tome 9 (1970), p. 153-154 | Article | MR 256413 | Zbl 0177.52103