Asymptotic analysis of linearly elastic shells: error estimates in the membrane case
Mardare, Cristinel
HAL, hal-01478594 / Harvested from HAL
The linear static problem for a thin shell made of a homogeneous and isotropic elastic material is analyzed. It is assumed that the shell thickness $2\epsilon$ is constant, the neutral shell surface $S\coloneq\bftheta(\omega)$ is bounded connected and elliptic and the shell edge $\Gamma$ is clamped. The solution ${\bf u}(\epsilon)$ of the three-dimensional problem is compared with the solution $\bfzeta$ of the corresponding two-dimensional membrane problem. The following estimate is proved for $\epsilon$ small enough: $$||{\bf u}(\epsilon)-\bfzeta ||_ {H^1(\Omega)\times H^1(\Omega)\times L^2(\Omega)}\le C\epsilon^a,\quad a={1\over6},\tag1$$where $\Omega=\omega\times(-1,\,1)\subset{\bf R}^3$. Here $\bftheta\colon\ \omega\to{\bf R}^3$ is a mapping of class $C^3$, the external body forces $f^i\in L^2(\Omega)$ with $\partial_{\alpha}f^{\alpha}\in L^2(\Omega)$, and $\bfzeta(y,x_3)=\bfzeta(y)\in{\bf H}^2(\Omega)$. It is also shown that inequality (1) cannot hold with $a>{5\over6}$ even for smooth enough functions $\bf f$.
Publié le : 1998-07-04
Classification:  Shells,  elasticity,  asymptotics,  error estimates,  three-dimensional model,  [MATH]Mathematics [math],  [MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP],  [MATH.MATH-FA]Mathematics [math]/Functional Analysis [math.FA],  [MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph],  [PHYS.MECA.SOLID]Physics [physics]/Mechanics [physics]/Mechanics of the solides [physics.class-ph]
@article{hal-01478594,
     author = {Mardare, Cristinel},
     title = {Asymptotic analysis of linearly elastic shells: error estimates in the membrane case},
     journal = {HAL},
     volume = {1998},
     number = {0},
     year = {1998},
     language = {en},
     url = {http://dml.mathdoc.fr/item/hal-01478594}
}
Mardare, Cristinel. Asymptotic analysis of linearly elastic shells: error estimates in the membrane case. HAL, Tome 1998 (1998) no. 0, . http://gdmltest.u-ga.fr/item/hal-01478594/