Bound on the counting function for the eigenvalues of an infinite multistratified acoustic strip
Poisson, Olivier
HAL, hal-01429917 / Harvested from HAL
Let N (µ) be the counting function of the eigenvalues associated with the self– adjoint operator −−(ρ(x, z)·) in the domain Ω = R×]0, h[, h > 0, with Neuman or Dirichlet conditions at z = 0, z = h. If ρ = 1 in the exterior of a bounded rectangular region O, that is, for |x| large, then N (µ) is known to be sublinear: the proof consists in the spectral analysis of a quadratic form obtained from a Green formula for −−(ρ(x, z)·) on O. In our case, the medium is multistratified: the function ρ(x, z) satisfies ρ(x, z) = ρ(z) for |x| large. Since the direct use of the previous proof fails, we modify the quadratic form and obtain the estimate N (µ) ≤ Cµ 3/2 .
Publié le : 1998-07-04
Classification:  35J20, 35L05, 35P, 47A70,  [MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP],  [MATH.MATH-SP]Mathematics [math]/Spectral Theory [math.SP]
@article{hal-01429917,
     author = {Poisson, Olivier},
     title = {Bound on the counting function for  the eigenvalues of an infinite multistratified acoustic strip},
     journal = {HAL},
     volume = {1998},
     number = {0},
     year = {1998},
     language = {en},
     url = {http://dml.mathdoc.fr/item/hal-01429917}
}
Poisson, Olivier. Bound on the counting function for  the eigenvalues of an infinite multistratified acoustic strip. HAL, Tome 1998 (1998) no. 0, . http://gdmltest.u-ga.fr/item/hal-01429917/