We consider an Abel equation (*)y’=p(x)y2 +q(x)y3 withp(x), q(x) polynomials inx. A center condition for (*) (closely related to the classical center condition for polynomial vector fields on the plane) is thaty0=y(0)≡y(1) for any solutiony(x) of (*).We introduce a parametric version of this condition: an equation (**)y’=p(x)y2 +εq(x)y3p, q as above, ℂ, is said to have a parametric center, if for any ε and for any solutiony(ε,x) of (**),y(ε,0)≡y(ε,1).We show that the parametric center condition implies vanishing of all the momentsmk(1), wheremk(x)=∫0xpk(t)q(t)(dt),P(x)=∫0xp(t)dt. We investigate the structure of zeroes ofmk(x) and on this base prove in some special cases a composition conjecture, stated in [10], for a parametric center problem.