Existence and uniqueness of solution to an adaptive elasticity model
Monnier, Jerome ; Trabucho, L.
HAL, hal-00908283 / Harvested from HAL
In this work we study the existence and unicity of solutions to an {\sl Adaptive Elasticity Model} applied to bone remodeling. Specifically, we consider the model derived by Cowin and Hegedus, directly from continuum mechanics theory. We use a fixed point argument in order to prove the existence of solutions and a straightforward adaptation of the Cowin and Nachlinger analysis in order to prove uniqueness.
Publié le : 1998-09-01
Classification:  [MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP],  [PHYS.MECA.BIOM]Physics [physics]/Mechanics [physics]/Biomechanics [physics.med-ph],  [SPI.MECA.BIOM]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Biomechanics [physics.med-ph]
@article{hal-00908283,
     author = {Monnier, Jerome and Trabucho, L.},
     title = {Existence and uniqueness of solution to an adaptive elasticity model},
     journal = {HAL},
     volume = {1998},
     number = {0},
     year = {1998},
     language = {en},
     url = {http://dml.mathdoc.fr/item/hal-00908283}
}
Monnier, Jerome; Trabucho, L. Existence and uniqueness of solution to an adaptive elasticity model. HAL, Tome 1998 (1998) no. 0, . http://gdmltest.u-ga.fr/item/hal-00908283/