Estimations de la dimension inférieure et de la dimension supérieure des mesures
Heurteaux, Yanick
HAL, hal-00475644 / Harvested from HAL
In good cases, we prove that the function $\tau$ which appears in multifractal formalism is adapted to calculate the lower and the upper dimension of a measure. Then, we are able to prove the derivability of $\tau$ for quasi-Bernoulli measures, thus precising some of Brown Michon and Peyrière results concerning the multifractal analysis of these measures.
Publié le : 1998-07-05
Classification:  Mesure de Hausdorff,  Mesure de packing,  Dimension de Hausdorff,  Dimension de Tricot,  Dimension inférieure et supérieure,  Analyse multifractale,  28A12 - 28A78 - 28D05 - 28D20 - 60F10,  [MATH.MATH-CA]Mathematics [math]/Classical Analysis and ODEs [math.CA]
@article{hal-00475644,
     author = {Heurteaux, Yanick},
     title = {Estimations de la dimension inf\'erieure et de la dimension sup\'erieure des mesures},
     journal = {HAL},
     volume = {1998},
     number = {0},
     year = {1998},
     language = {fr},
     url = {http://dml.mathdoc.fr/item/hal-00475644}
}
Heurteaux, Yanick. Estimations de la dimension inférieure et de la dimension supérieure des mesures. HAL, Tome 1998 (1998) no. 0, . http://gdmltest.u-ga.fr/item/hal-00475644/