q-deformed W-algebras and elliptic algebras
Avan, J. ; Frappat, L. ; Rossi, M. ; Sorba, P.
HAL, hal-00376656 / Harvested from HAL
The elliptic algebra $A_{q,p}(sl(N)_{c})$ at the critical level $c=-N$ has an extended center containing trace-like operators $t(z)$. Families of Poisson structures, defining q-deformations of the $W_N$ algebra, are constructed. The operators $t(z)$ also close an exchange algebra when $(-p^{1/2})^{NM} = q^{-c-N}$ for $M \in Z$. It becomes Abelian when in addition $p=q^{Nh}$ where $h$ is a non-zero integer. The Poisson structures obtained in these classical limits contain different q-deformed $W_N$ algebras depending on the parity of $h$, characterizing the exchange structures at $p =/ q^{Nh}$ as new $W_{q,p}(sl(N))$ algebras.
Publié le : 1998-07-05
Classification:  [MATH.MATH-QA]Mathematics [math]/Quantum Algebra [math.QA]
@article{hal-00376656,
     author = {Avan, J. and Frappat, L. and Rossi, M. and Sorba, P.},
     title = {q-deformed W-algebras and elliptic algebras},
     journal = {HAL},
     volume = {1998},
     number = {0},
     year = {1998},
     language = {en},
     url = {http://dml.mathdoc.fr/item/hal-00376656}
}
Avan, J.; Frappat, L.; Rossi, M.; Sorba, P. q-deformed W-algebras and elliptic algebras. HAL, Tome 1998 (1998) no. 0, . http://gdmltest.u-ga.fr/item/hal-00376656/