New W_{q,p}(sl(2)) algebras from the elliptic algebra A_{q,p}(sl(2)_c)
Avan, J. ; Frappat, L. ; Rossi, M. ; Sorba, P.
HAL, hal-00376600 / Harvested from HAL
We construct operators t(z) in the elliptic algebra introduced by Foda et al. A_{q,p}sl(2)_c). They close an exchange algebra when p^m=q^{c+2} for m integer. In addition they commute when p=q^{2k} for k integer non-zero, and they belong to the center of A_{q,p}(sl(2)_c) when k is odd. The Poisson structures obtained for t(z) in these classical limits are identical to the q-deformed Virasoro Poisson algebra, characterizing the exchange algebras at generic values of p, q and m as new W_{q,p}(sl(2)) algebras.
Publié le : 1998-07-05
Classification:  [MATH.MATH-QA]Mathematics [math]/Quantum Algebra [math.QA]
@article{hal-00376600,
     author = {Avan, J. and Frappat, L. and Rossi, M. and Sorba, P.},
     title = {New W\_{q,p}(sl(2)) algebras from the elliptic algebra A\_{q,p}(sl(2)\_c)},
     journal = {HAL},
     volume = {1998},
     number = {0},
     year = {1998},
     language = {en},
     url = {http://dml.mathdoc.fr/item/hal-00376600}
}
Avan, J.; Frappat, L.; Rossi, M.; Sorba, P. New W_{q,p}(sl(2)) algebras from the elliptic algebra A_{q,p}(sl(2)_c). HAL, Tome 1998 (1998) no. 0, . http://gdmltest.u-ga.fr/item/hal-00376600/