A generalization of Cobham's Theorem
Durand, Fabien
HAL, hal-00303322 / Harvested from HAL
If a non-periodic sequence $X$ is the image by a morphism of a fixed point of both a primitive substitution $\sigma$ and a primitive substitution $\tau$, then the dominant eigenvalues of the matrices of $\sigma$ and of $\tau$ are multiplicatively dependent. This is the way we propose to generalize Cobham's Theorem.
Publié le : 1998-09-28
Classification:  Cobham,  substitution,  return word,  11B85,  [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO]
@article{hal-00303322,
     author = {Durand, Fabien},
     title = {A generalization of Cobham's Theorem},
     journal = {HAL},
     volume = {1998},
     number = {0},
     year = {1998},
     language = {en},
     url = {http://dml.mathdoc.fr/item/hal-00303322}
}
Durand, Fabien. A generalization of Cobham's Theorem. HAL, Tome 1998 (1998) no. 0, . http://gdmltest.u-ga.fr/item/hal-00303322/