Entropy rigidity of Anosov flows in dimension 3.
Foulon, Patrick
HAL, hal-00129579 / Harvested from HAL
We show that for a smooth contact Anosov flow on a closed three manifold the measure of maximal entropy is in the Lebesgue class if and only if the flow is up to finite covers conjugate to the geodesic flow of a metric of constant negative curvature on a closed surface.This shows that the ratio between the measure theoretic entropy and the topological entropy of a contact Anosov flow is strictly smaller than one on any closed three manifold which is not a Seifert bundle.
Publié le : 1998-11-19
Classification:  géométrie différentielle,  théorie ergodique,  "géométrie différentielle,  systèmes dynamiques,  théorie ergodique",  53C15, 53C22,34C35,58F25,58F11,  [MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG]
@article{hal-00129579,
     author = {Foulon, Patrick},
     title = {Entropy rigidity of Anosov flows in dimension 3.},
     journal = {HAL},
     volume = {1998},
     number = {0},
     year = {1998},
     language = {en},
     url = {http://dml.mathdoc.fr/item/hal-00129579}
}
Foulon, Patrick. Entropy rigidity of Anosov flows in dimension 3.. HAL, Tome 1998 (1998) no. 0, . http://gdmltest.u-ga.fr/item/hal-00129579/