Algebraic cycles and topology of real Enriques surfaces
Mangolte, Frédéric ; Van Hamel, Joost
HAL, hal-00001385 / Harvested from HAL
For a real Enriques surface Y we prove that every homology class in H_1(Y(R), Z/2) can be represented by a real algebraic curve if and only if all connected components of Y(R) are orientable. Furthermore, we give a characterization of real Enriques surfaces which are Galois-Maximal and/or Z-Galois-Maximal and we determine the Brauer group of any real Enriques surface.
Publié le : 1998-07-05
Classification:  Algebraic cycles,  Enriques surfaces,  Galois-Maximality,  Brauer group,  Real algebraic surfaces,  MSC (1991) 14C25 14P25 14J28,  [MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG]
@article{hal-00001385,
     author = {Mangolte, Fr\'ed\'eric and Van Hamel, Joost},
     title = {Algebraic cycles and topology of real Enriques surfaces},
     journal = {HAL},
     volume = {1998},
     number = {0},
     year = {1998},
     language = {en},
     url = {http://dml.mathdoc.fr/item/hal-00001385}
}
Mangolte, Frédéric; Van Hamel, Joost. Algebraic cycles and topology of real Enriques surfaces. HAL, Tome 1998 (1998) no. 0, . http://gdmltest.u-ga.fr/item/hal-00001385/