The Saturation Number for the Length of Degree Monotone Paths
Yair Caro ; Josef Lauri ; Christina Zarb
Discussiones Mathematicae Graph Theory, Tome 35 (2015), p. 557-569 / Harvested from The Polish Digital Mathematics Library

A degree monotone path in a graph G is a path P such that the sequence of degrees of the vertices in the order in which they appear on P is monotonic. The length (number of vertices) of the longest degree monotone path in G is denoted by mp(G). This parameter, inspired by the well-known Erdős- Szekeres theorem, has been studied by the authors in two earlier papers. Here we consider a saturation problem for the parameter mp(G). We call G saturated if, for every edge e added to G, mp(G + e) > mp(G), and we define h(n, k) to be the least possible number of edges in a saturated graph G on n vertices with mp(G) < k, while mp(G+e) ≥ k for every new edge e. We obtain linear lower and upper bounds for h(n, k), we determine exactly the values of h(n, k) for k = 3 and 4, and we present constructions of saturated graphs.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:271208
@article{bwmeta1.element.doi-10_7151_dmgt_1817,
     author = {Yair Caro and Josef Lauri and Christina Zarb},
     title = {The Saturation Number for the Length of Degree Monotone Paths},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {35},
     year = {2015},
     pages = {557-569},
     zbl = {1317.05030},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_7151_dmgt_1817}
}
Yair Caro; Josef Lauri; Christina Zarb. The Saturation Number for the Length of Degree Monotone Paths. Discussiones Mathematicae Graph Theory, Tome 35 (2015) pp. 557-569. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_7151_dmgt_1817/

[1] B. Bollobás, Extremal Graph Theory (Dover Publications, New York, 2004). | Zbl 1099.05044

[2] Y. Caro, J. Lauri and C. Zarb, Degree monotone paths, ArXiv e-prints (2014) submitted. | Zbl 1317.05030

[3] Y. Caro, J. Lauri and C. Zarb, Degree monotone paths and graph operations, ArXiv e-prints (2014) submitted.

[4] J. Deering, Uphill and downhill domination in graphs and related graph parameters, Ph.D. Thesis, ETSU (2013).

[5] J. Deering, T.W. Haynes, S.T. Hedetniemi and W. Jamieson, Downhill and uphill domination in graphs, (2013) submitted.

[6] J. Deering, T.W. Haynes, S.T. Hedetniemi and W. Jamieson, A Polynomial time algorithm for downhill and uphill domination, (2013) submitted.

[7] M. Eliáš and J. Matoušek, Higher-order Erdős-Szekeres theorems, Adv. Math. 244 (2013) 1-15. doi:10.1016/j.aim.2013.04.020[Crossref] | Zbl 1283.05175

[8] P. Erdős, A. Hajnal and J.W. Moon, A problem in graph theory, Amer. Math.Monthly 71 (1964) 1107-1110. doi:10.2307/2311408[Crossref]

[9] P. Erdős and G. Szekeres, A combinatorial problem in geometry, Compos. Math. 2 (1935) 463-470. | Zbl 0012.27010

[10] J.R. Faudree, R.J. Faudree and J.R. Schmitt, A survey of minimum saturated graphs, Electron. J. Combin. 18 (2011) #DS19. | Zbl 1222.05113

[11] T.W. Haynes, S.T. Hedetniemi, J.D. Jamieson and W.B. Jamieson, Downhill dom- ination in graphs, Discuss. Math. Graph Theory 34 (2014) 603-612. doi:10.7151/dmgt.1760[Crossref] | Zbl 1295.05176

[12] L. Kászonyi and Zs. Tuza, Saturated graphs with minimal number of edges, J. Graph Theory 10 (1986) 203-210. doi:10.1002/jgt.3190100209 [Crossref] | Zbl 0593.05041