An Oriented Version of the 1-2-3 Conjecture
Olivier Baudon ; Julien Bensmail ; Éric Sopena
Discussiones Mathematicae Graph Theory, Tome 35 (2015), p. 141-156 / Harvested from The Polish Digital Mathematics Library

The well-known 1-2-3 Conjecture addressed by Karoński, Luczak and Thomason asks whether the edges of every undirected graph G with no isolated edge can be assigned weights from {1, 2, 3} so that the sum of incident weights at each vertex yields a proper vertex-colouring of G. In this work, we consider a similar problem for oriented graphs. We show that the arcs of every oriented graph −G⃗ can be assigned weights from {1, 2, 3} so that every two adjacent vertices of −G⃗ receive distinct sums of outgoing weights. This result is tight in the sense that some oriented graphs do not admit such an assignment using the weights from {1, 2} only. We finally prove that deciding whether two weights are sufficient for a given oriented graph is an NP-complete problem. These results also hold for product or list versions of this problem.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:271217
@article{bwmeta1.element.doi-10_7151_dmgt_1791,
     author = {Olivier Baudon and Julien Bensmail and \'Eric Sopena},
     title = {An Oriented Version of the 1-2-3 Conjecture},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {35},
     year = {2015},
     pages = {141-156},
     zbl = {1326.05043},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_7151_dmgt_1791}
}
Olivier Baudon; Julien Bensmail; Éric Sopena. An Oriented Version of the 1-2-3 Conjecture. Discussiones Mathematicae Graph Theory, Tome 35 (2015) pp. 141-156. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_7151_dmgt_1791/

[1] B. Seamone, The 1-2-3 Conjecture and related problems: a survey, Technical Report, available at http://arxiv.org/abs/1211.5122 (2012).

[2] W. Imrich and S. Klavzar, Product Graphs: Structure and Recognition (Wiley- Interscience, New York, 2000).

[3] J.W. Moon, Topics on Tournaments (Holt, Rinehart and Winston, 1968).

[4] J. Skowronek-Kaziów, 1, 2 conjecture-the multiplicative version, Inform. Process. Lett. 107 (2008) 93-95. doi:10.1016/j.ipl.2008.01.006[Crossref]

[5] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness (W.H. Freeman, 1979). | Zbl 0411.68039

[6] M. Kalkowski and M. Karoński and F. Pfender, Vertex-coloring edge-weightings: Towards the 1-2-3 conjecture, J. Combin. Theory (B) 100 (2010) 347-349. doi:10.1016/j.jctb.2009.06.002[WoS][Crossref] | Zbl 1209.05087

[7] T. Bartnicki, J. Grytczuk and S. Niwczyk, Weight choosability of graphs, J. Graph Theory 60 (2009) 242-256. doi:10.1002/jgt.20354[Crossref] | Zbl 1210.05138

[8] M. Borowiecki, J. Grytczuk and M. Pilśniak, Coloring chip configurations on graphs and digraphs, Inform. Process. Lett. 112 (2012) 1-4. doi:10.1016/j.ipl.2011.09.011[Crossref][WoS] | Zbl 1232.05074

[9] M. Khatirinejad, R. Naserasr, M. Newman, B. Seamone and B. Stevens, Digraphs are 2-weight choosable, Electron. J. Combin. 18 (2011) #1. | Zbl 1205.05101

[10] M. Karoński, T. Luczak and A. Thomason, Edge weights and vertex colours, J. Combin. Theory (B) 91 (2004) 151-157. doi:10.1016/j.jctb.2003.12.001[Crossref] | Zbl 1042.05045

[11] O. Baudon, J. Bensmail, J. Przyby lo and M. Wózniak, On decomposing regular graphs into locally irregular subgraphs, Preprint MD 065 (2012), available at http://www.ii.uj.edu.pl/preMD/index.php. | Zbl 1315.05105

[12] L. Addario-Berry, R.E.L. Aldred, K. Dalal and B.A. Reed, Vertex colouring edge partitions, J. Combin. Theory (B) 94 (2005) 237-244. doi:10.1016/j.jctb.2005.01.001[Crossref] | Zbl 1074.05031