Pairs Of Edges As Chords And As Cut-Edges
Terry A. McKee
Discussiones Mathematicae Graph Theory, Tome 34 (2014), p. 673-681 / Harvested from The Polish Digital Mathematics Library

Several authors have studied the graphs for which every edge is a chord of a cycle; among 2-connected graphs, one characterization is that the deletion of one vertex never creates a cut-edge. Two new results: among 3-connected graphs with minimum degree at least 4, every two adjacent edges are chords of a common cycle if and only if deleting two vertices never creates two adjacent cut-edges; among 4-connected graphs, every two edges are always chords of a common cycle.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:269818
@article{bwmeta1.element.doi-10_7151_dmgt_1755,
     author = {Terry A. McKee},
     title = {Pairs Of Edges As Chords And As Cut-Edges},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {34},
     year = {2014},
     pages = {673-681},
     zbl = {1303.05102},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_7151_dmgt_1755}
}
Terry A. McKee. Pairs Of Edges As Chords And As Cut-Edges. Discussiones Mathematicae Graph Theory, Tome 34 (2014) pp. 673-681. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_7151_dmgt_1755/

[1] T. Denley and H. Wu, A generalization of a theorem of Dirac, J. Combin. Theory (B) 82 (2001) 322-326. doi:10.1006/jctb.2001.2041 | Zbl 1025.05039

[2] G.A. Dirac, In abstrakten Graphen vorhandene vollständige 4-Graphen und ihre Unterteilungen, Math. Nachr. 22 (1960) 61-85. doi:10.1002/mana.19600220107 | Zbl 0096.17903

[3] R.J. Faudree, Survey of results on k-ordered graphs, Discrete Math. 229 (2001) 73-87. doi:10.1016/S0012-365X(00)00202-8

[4] W. Gu, X. Jia and H. Wu, Chords in graphs, Australas. J. Combin. 32 (2005) 117-124. | Zbl 1066.05081

[5] L. Lovász, Combinatorial Problems and Exercises, Corrected reprint of the 1993 Second Edition (AMS Chelsea Publishing, Providence, 2007).

[6] K. Menger, Zur allgemeinen Kurventheorie, Fund. Math. 10 (1927) 96-115.

[7] T.A. McKee, Chords and connectivity, Bull. Inst. Combin. Appl. 47 (2006) 48-52.

[8] M.D. Plummer, On path properties versus connectivity I , in: Proceedings of the Second Louisiana Conference on Combinatorics, Graph Theory and Computing, R.C. Mullin, et al. (Ed(s)), (Louisiana State Univ., Baton Rouge, 1971) 457-472.