Sums of Powered Characteristic Roots Count Distance-Independent Circular Sets
Zdzisław Skupień
Discussiones Mathematicae Graph Theory, Tome 33 (2013), p. 217-229 / Harvested from The Polish Digital Mathematics Library

Significant values of a combinatorial count need not fit the recurrence for the count. Consequently, initial values of the count can much outnumber those for the recurrence. So is the case of the count, Gl(n), of distance-l independent sets on the cycle Cn, studied by Comtet for l ≥ 0 and n ≥ 1 [sic]. We prove that values of Gl(n) are nth power sums of the characteristic roots of the corresponding recurrence unless 2 ≤ n ≤ l. Lucas numbers L(n) are thus generalized since L(n) is the count in question if l = 1. Asymptotics of the count for 1 ≤ l ≤ 4 involves the golden ratio (if l = 1) and three of the four smallest Pisot numbers inclusive of the smallest of them, plastic number, if l = 4. It is shown that the transition from a recurrence to an OGF, or back, is best presented in terms of mutually reciprocal (shortly: coreciprocal) polynomials. Also the power sums of roots (i.e., moments) of a polynomial have the OGF expressed in terms of the co-reciprocal polynomial.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:268282
@article{bwmeta1.element.doi-10_7151_dmgt_1658,
     author = {Zdzis\l aw Skupie\'n},
     title = {Sums of Powered Characteristic Roots Count Distance-Independent Circular Sets},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {33},
     year = {2013},
     pages = {217-229},
     zbl = {1293.05278},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_7151_dmgt_1658}
}
Zdzisław Skupień. Sums of Powered Characteristic Roots Count Distance-Independent Circular Sets. Discussiones Mathematicae Graph Theory, Tome 33 (2013) pp. 217-229. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_7151_dmgt_1658/

[1] G.E. Andrews, A theorem on reciprocal polynomials with applications to permutations and compositions, Amer. Math. Monthly 82 (1975) 830-833. doi:10.2307/2319803[Crossref]

[2] C. Berge, Principes de combinatoire (Dunod, Paris, 1968). (English transl.: Principles of Combinatorics (Acad. Press, New York and London, 1971). | Zbl 0227.05001

[3] M.-J. Bertin, A. Decomps-Guilloux, M. Grandet-Hugot, M. Pathiaux-Delefosse, and J.P. Schreiber, Pisot and Salem Numbers (Birkhauser, Basel, 1992).[WoS]

[4] L. Comtet, Advanced Combinatorics. The art of Finite and Infinite Expansions (D. Reidel, Dordrecht, 1974). (French original: Analyse combinatoire, vol. I, II (Presses Univ. France, Paris, 1970).

[5] Ph. Flajolet and R. Sedgewick, Analytic Combinatorics (Cambridge Univ. Press, 2009). http://algo.inria.fr/flajolet/Publications/books.html | Zbl 1165.05001

[6] I. Kaplansky, Solution of the “Probleme des ménages”, Bull. Amer. Math. Soc. 49 (1943) 784-785. doi:10.1090/S0002-9904-1943-08035-4[Crossref] | Zbl 0060.02904

[7] M. Kwaśnik and I. Włoch, The total number of generalized stable sets and kernels of graphs, Ars Combin. 55 (2000) 139-146.

[8] W. Lang, A196837: Ordinary generating functions for sums of powers of the first n positive integers, (2011). http://www-itp.particle.uni-karlsruhe.de/~wl

[9] T. Muir, Note on selected combinations, Proc. Roy. Soc. Edinburgh 24 (1901-2) 102-104. | Zbl 33.0229.01

[10] H. Prodinger and R.F. Tichy, Fibonacci numbers of graphs, Fibonacci Quart. 20 (1982) 16-21. | Zbl 0475.05046

[11] Z. Skupień, On sparse hamiltonian 2-decompositions together with exact count of numerous Hamilton cycles, Electron. Notes Discrete Math. 24 (2006) 231-235. doi:10.1016/j.endm.2006.06.032[Crossref] | Zbl 1202.05085

[12] Z. Skupień, Sparse hamiltonian 2-decompositions together with exact count of numerous Hamilton cycles, Discrete Math. 309 (2009) 6382-6390. doi:10.1016/j.disc.2008.11.003[WoS][Crossref] | Zbl 1184.05078

[13] Z. Skupień, Multi-compositions in exponential counting of hypohamiltonian graphs and/or snarks, manuscript (2009).

[14] Z. Skupień, Generating Girard-Newton-Waring’s moments of mutually reciprocal polynomials, manuscript (2012).

[15] N.J.A. Sloane, The On-Line Encyclopedia of Integer Sequences, OEIS (2007). www.research.att.com/~njas/sequences/ | Zbl 1159.11327

[16] R.P. Stanley, Enumerative Combinatorics, vol. 1 (Cambridge Univ. Press, 1997). doi:10.1017/CBO9780511805967[Crossref] | Zbl 0889.05001

[17] Wikipedia, Pisot-Vijayaraghavan number, (2012). http://en.wikipedia.org/wiki/Pisot-Vijayaraghavan_number (as of 2012.03.30)