Rainbow Connection In Sparse Graphs
Arnfried Kemnitz ; Jakub Przybyło ; Ingo Schiermeyer ; Mariusz Woźniak
Discussiones Mathematicae Graph Theory, Tome 33 (2013), p. 181-192 / Harvested from The Polish Digital Mathematics Library

An edge-coloured connected graph G = (V,E) is called rainbow-connected if each pair of distinct vertices of G is connected by a path whose edges have distinct colours. The rainbow connection number of G, denoted by rc(G), is the minimum number of colours such that G is rainbow-connected. In this paper we prove that rc(G) ≤ k if |V (G)| = n and for all integers n and k with n − 6 ≤ k ≤ n − 3. We also show that this bound is tight.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:267722
@article{bwmeta1.element.doi-10_7151_dmgt_1640,
     author = {Arnfried Kemnitz and Jakub Przyby\l o and Ingo Schiermeyer and Mariusz Wo\'zniak},
     title = {Rainbow Connection In Sparse Graphs},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {33},
     year = {2013},
     pages = {181-192},
     zbl = {1291.05069},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_7151_dmgt_1640}
}
Arnfried Kemnitz; Jakub Przybyło; Ingo Schiermeyer; Mariusz Woźniak. Rainbow Connection In Sparse Graphs. Discussiones Mathematicae Graph Theory, Tome 33 (2013) pp. 181-192. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_7151_dmgt_1640/

[1] J.A. Bondy and U.S.R. Murty, Graph Theory (Springer, 2008). doi:10.1007/978-1-84628-970-5[Crossref]

[2] Y. Caro, A. Lev, Y. Roditty, Z. Tuza, and R. Yuster, On rainbow connection, Electron. J. Combin. 15 (2008) #57. | Zbl 1181.05037

[3] S. Chakraborty, E. Fischer, A. Matsliah, and R. Yuster, Hardness and algorithms for rainbow connectivity, J. Comb. Optim. 21 (2011) 330-347. doi:10.1007/s10878-009-9250-9[Crossref] | Zbl 1319.05049

[4] L.S. Chandran, A. Das, D. Rajendraprasad, and N.M. Varma, Rainbow connection number and connected dominating sets, J. Graph Theory 71 (2012) 206-218. doi:10.1002/jgt.20643[Crossref] | Zbl 1248.05098

[5] G. Chartrand, G.L. Johns, K.A. McKeon, and P. Zhang, Rainbow connection in graphs, Math. Bohemica 133 (2008) 85-98. | Zbl 1199.05106

[6] A.B. Ericksen, A matter of security, Graduating Engineer & Computer Careers (2007) 24-28.

[7] J. Ekstein, P. Holub, T. Kaiser, M. Koch, S. Matos Camacho, Z. Ryjáček and I. Schiermeyer, The rainbow connection number in 2-connected graphs, Discrete Math. doi:10.1016/j.disc.2012.04.022[WoS][Crossref] | Zbl 1277.05061

[8] E. Győri, On division of graphs to connected subgraphs, Combinatorics, Vol. I, pp. 485-494, Colloq. Math. Soc. J´anos Bolyai, 18, North-Holland, Amsterdam, 1978. | Zbl 0388.05008

[9] A. Kemnitz and I. Schiermeyer, Graphs with rainbow connection number two, Discuss. Math. Graph Theory 31 (2011) 313-320. doi:10.7151/dmgt.1547[Crossref]

[10] M. Krivelevich and R. Yuster, The rainbow connection of a graph is (at most) reciprocal to its minimum degree, J. Graph Theory 63 (2010) 185-191.[WoS] | Zbl 1193.05079

[11] V.B. Le and Zs. Tuza, Finding optimal rainbow connection is hard, Preprint 2009.

[12] X. Li, M. Liu, and I. Schiermeyer, Rainbow connection number of dense graphs, to appear in Discuss. Math. Graph Theory. arXiv: 1110.5772v1 [math.CO] 2011

[13] X. Li and Y. Sun, Rainbow Connections of Graphs, Springer Briefs in Math., Springer, New York, 2012. | Zbl 1250.05066

[14] L. Lovász, A homology theory for spanning trees of a graph, Acta Math. Hungar. 30 (1977) 241-251. doi:10.1007/BF01896190[Crossref] | Zbl 0403.05040

[15] I. Schiermeyer, Rainbow connection in graphs with minimum degree three, Lecture Notes Computer Science 5874 (2009) 432-437. doi:10.1007/978-3-642-10217-2 42[Crossref] | Zbl 1267.05125