The Gödel Completeness Theorem for Uncountable Languages
Julian J. Schlöder ; Peter Koepke
Formalized Mathematics, Tome 20 (2012), p. 199-203 / Harvested from The Polish Digital Mathematics Library

This article is the second in a series of two Mizar articles constituting a formal proof of the Gödel Completeness theorem [15] for uncountably large languages. We follow the proof given in [16]. The present article contains the techniques required to expand a theory such that the expanded theory contains witnesses and is negation faithful. Then the completeness theorem follows immediately.

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:268200
@article{bwmeta1.element.doi-10_2478_v10037-012-0023-z,
     author = {Julian J. Schl\"oder and Peter Koepke},
     title = {The G\"odel Completeness Theorem for Uncountable Languages},
     journal = {Formalized Mathematics},
     volume = {20},
     year = {2012},
     pages = {199-203},
     zbl = {1288.03035},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_v10037-012-0023-z}
}
Julian J. Schlöder; Peter Koepke. The Gödel Completeness Theorem for Uncountable Languages. Formalized Mathematics, Tome 20 (2012) pp. 199-203. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_v10037-012-0023-z/

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.

[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990. | Zbl 06213858

[3] Grzegorz Bancerek. König’s theorem. Formalized Mathematics, 1(3):589-593, 1990.

[4] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.

[5] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.

[6] Patrick Braselmann and Peter Koepke. Equivalences of inconsistency and Henkin models. Formalized Mathematics, 13(1):45-48, 2005.

[7] Patrick Braselmann and Peter Koepke. G¨odel’s completeness theorem. Formalized Mathematics, 13(1):49-53, 2005.

[8] Patrick Braselmann and Peter Koepke. A sequent calculus for first-order logic. FormalizedMathematics, 13(1):33-39, 2005.

[9] Patrick Braselmann and Peter Koepke. Substitution in first-order formulas. Part II. The construction of first-order formulas. Formalized Mathematics, 13(1):27-32, 2005.

[10] Czesław Bylinski. A classical first order language. Formalized Mathematics, 1(4):669-676, 1990.

[11] Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.

[12] Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.

[13] Czesław Bylinski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.

[14] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.

[15] Kurt G¨odel. Die Vollst¨andigkeit der Axiome des logischen Funktionenkalk¨uls. Monatshefte f¨ur Mathematik und Physik 37, 1930.

[16] W. Thomas H.-D. Ebbinghaus, J. Flum. Einf¨uhrung in die Mathematische Logik. Springer-Verlag, Berlin Heidelberg, 2007.

[17] Piotr Rudnicki and Andrzej Trybulec. A first order language. Formalized Mathematics, 1(2):303-311, 1990.

[18] Julian J. Schlöder and Peter Koepke. Transition of consistency and satisfiability under language extensions. Formalized Mathematics, 20(3):193-197, 2012, doi: 10.2478/v10037-012-0022-0.[Crossref] | Zbl 1288.03034

[19] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.

[20] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.

[21] Edmund Woronowicz. Interpretation and satisfiability in the first order logic. FormalizedMathematics, 1(4):739-743, 1990.

[22] Edmund Woronowicz. Many argument relations. Formalized Mathematics, 1(4):733-737, 1990.

[23] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.