Several Integrability Formulas of Special Functions
Cuiying Peng ; Fuguo Ge ; Xiquan Liang
Formalized Mathematics, Tome 15 (2007), p. 189-198 / Harvested from The Polish Digital Mathematics Library

In this article, we give several integrability formulas of special and composite functions including trigonometric function, inverse trigonometric function, hyperbolic function and logarithmic function.

Publié le : 2007-01-01
EUDML-ID : urn:eudml:doc:267483
@article{bwmeta1.element.doi-10_2478_v10037-007-0023-6,
     author = {Cuiying Peng and Fuguo Ge and Xiquan Liang},
     title = {Several Integrability Formulas of Special Functions},
     journal = {Formalized Mathematics},
     volume = {15},
     year = {2007},
     pages = {189-198},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_v10037-007-0023-6}
}
Cuiying Peng; Fuguo Ge; Xiquan Liang. Several Integrability Formulas of Special Functions. Formalized Mathematics, Tome 15 (2007) pp. 189-198. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_v10037-007-0023-6/

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990. | Zbl 06213858

[2] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.

[3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.

[4] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.

[5] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.

[6] Czesław Byliński. and Piotr Rudnicki. Bounding boxes for compact sets in ε2. Formalized Mathematics, 6(3):427-440, 1997.

[7] Noboru Endou and Artur Korniłowicz. The definition of the Riemann definite integral and some related lemmas. Formalized Mathematics, 8(1):93-102, 1999.

[8] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Definition of integrability for partial functions from RtoR and integrability for continuous functions. Formalized Mathematics, 9(2):281-284, 2001.

[9] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.

[10] Artur Korniłowicz and Yasunari Shidama. Inverse trigonometric functions arcsin and arccos. Formalized Mathematics, 13(1):73-79, 2005. | Zbl 1276.26026

[11] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273-275, 1990.

[12] Jarosław Kotowicz. Partial functions from a domain to the set of real numbers. Formalized Mathematics, 1(4):703-709, 1990.

[13] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.

[14] Takashi Mitsuishi and Yuguang Yang. Properties of the trigonometric function. Formalized Mathematics, 8(1):103-106, 1999.

[15] Konrad Raczkowski and Andrzej Nedzusiak. Real exponents and logarithms. Formalized Mathematics, 2(2):213-216, 1991.

[16] Konrad Raczkowski and Paweł Sadowski. Real function continuity. Formalized Mathematics, 1(4):787-791, 1990.

[17] Konrad Raczkowski and Paweł Sadowski. Real function differentiability. Formalized Mathematics, 1(4):797-801, 1990.

[18] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990.

[19] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.

[20] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.

[21] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.

[22] Andrzej Trybulec. On the sets inhabited by numbers. Formalized Mathematics, 11(4):341-347, 2003.

[23] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.

[24] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.

[25] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

[26] Yuguang Yang and Yasunari Shidama. Trigonometric functions and existence of circle ratio. Formalized Mathematics, 7(2):255-263, 1998.