The Sylow Theorems
Marco Riccardi
Formalized Mathematics, Tome 15 (2007), p. 159-165 / Harvested from The Polish Digital Mathematics Library

The goal of this article is to formalize the Sylow theorems closely following the book [4]. Accordingly, the article introduces the group operating on a set, the stabilizer, the orbits, the p-groups and the Sylow subgroups.

Publié le : 2007-01-01
EUDML-ID : urn:eudml:doc:267368
@article{bwmeta1.element.doi-10_2478_v10037-007-0018-3,
     author = {Marco Riccardi},
     title = {The Sylow Theorems},
     journal = {Formalized Mathematics},
     volume = {15},
     year = {2007},
     pages = {159-165},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_v10037-007-0018-3}
}
Marco Riccardi. The Sylow Theorems. Formalized Mathematics, Tome 15 (2007) pp. 159-165. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_v10037-007-0018-3/

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.

[2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.

[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.

[4] Nicolas Bourbaki. Elements of Mathematics. Algebra I. Chapters 1-3. Springer-Verlag, Berlin, Heidelberg, New York, London, Paris, Tokyo, 1989. | Zbl 0673.00001

[5] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.

[6] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.

[7] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.

[8] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.

[9] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.

[10] Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661-668, 1990.

[11] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.

[12] Artur Korniłowicz. The definition and basic properties of topological groups. Formalized Mathematics, 7(2):217-225, 1998.

[13] Rafał Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887-890, 1990.

[14] Rafał Kwiatek and Grzegorz Zwara. The divisibility of integers and integer relative primes. Formalized Mathematics, 1(5):829-832, 1990.

[15] Karol Pak. Cardinal numbers and finite sets. Formalized Mathematics, 13(3):399-406, 2005.

[16] Konrad Raczkowski and Paweł Sadowski. Equivalence relations and classes of abstraction. Formalized Mathematics, 1(3):441-444, 1990.

[17] Dariusz Surowik. Cyclic groups and some of their properties - part I. Formalized Mathematics, 2(5):623-627, 1991.

[18] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.

[19] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.

[20] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.

[21] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.

[22] Wojciech A. Trybulec. Classes of conjugation. Normal subgroups. Formalized Mathematics, 1(5):955-962, 1990.

[23] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.

[24] Wojciech A. Trybulec. Subgroup and cosets of subgroups. Formalized Mathematics, 1(5):855-864, 1990.

[25] Wojciech A. Trybulec and Michał J. Trybulec. Homomorphisms and isomorphisms of groups. Quotient group. Formalized Mathematics, 2(4):573-578, 1991.

[26] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.

[27] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

[28] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.