Some Properties of Line and Column Operations on Matrices
Xiquan Liang ; Tao Sun ; Dahai Hu
Formalized Mathematics, Tome 15 (2007), p. 151-157 / Harvested from The Polish Digital Mathematics Library

This article describes definitions of elementary operations about matrix and their main properties.

Publié le : 2007-01-01
EUDML-ID : urn:eudml:doc:266924
@article{bwmeta1.element.doi-10_2478_v10037-007-0017-4,
     author = {Xiquan Liang and Tao Sun and Dahai Hu},
     title = {Some Properties of Line and Column Operations on Matrices},
     journal = {Formalized Mathematics},
     volume = {15},
     year = {2007},
     pages = {151-157},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_v10037-007-0017-4}
}
Xiquan Liang; Tao Sun; Dahai Hu. Some Properties of Line and Column Operations on Matrices. Formalized Mathematics, Tome 15 (2007) pp. 151-157. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_v10037-007-0017-4/

[1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.

[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.

[3] Czesław Byliński. Binary operations applied to finite sequences. Formalized Mathematics, 1(4):643-649, 1990.

[4] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.

[5] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.

[6] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.

[7] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.

[8] Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics, 2(4):475-480, 1991.

[9] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.

[10] Michał Muzalewski. Construction of rings and left-, right-, and bi-modules over a ring. Formalized Mathematics, 2(1):3-11, 1991.

[11] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.

[12] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.

[13] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.

[14] Wojciech A. Trybulec. Binary operations on finite sequences. Formalized Mathematics, 1(5):979-981, 1990.

[15] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.

[16] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.

[17] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.

[18] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

[19] Xiaopeng Yue, Xiquan Liang, and Zhongpin Sun. Some properties of some special matrices. Formalized Mathematics, 13(4):541-547, 2005.

[20] Katarzyna Zawadzka. The sum and product of finite sequences of elements of a field. Formalized Mathematics, 3(2):205-211, 1992.

[21] Katarzyna Zawadzka. The product and the determinant of matrices with entries in a field. Formalized Mathematics, 4(1):1-8, 1993.