The Rank+Nullity Theorem
Jesse Alama
Formalized Mathematics, Tome 15 (2007), p. 137-142 / Harvested from The Polish Digital Mathematics Library

The rank+nullity theorem states that, if T is a linear transformation from a finite-dimensional vector space V to a finite-dimensional vector space W, then dim(V) = rank(T) + nullity(T), where rank(T) = dim(im(T)) and nullity(T) = dim(ker(T)). The proof treated here is standard; see, for example, [14]: take a basis A of ker(T) and extend it to a basis B of V, and then show that dim(im(T)) is equal to |B - A|, and that T is one-to-one on B - A.

Publié le : 2007-01-01
EUDML-ID : urn:eudml:doc:267154
@article{bwmeta1.element.doi-10_2478_v10037-007-0015-6,
     author = {Jesse Alama},
     title = {The Rank+Nullity Theorem},
     journal = {Formalized Mathematics},
     volume = {15},
     year = {2007},
     pages = {137-142},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_v10037-007-0015-6}
}
Jesse Alama. The Rank+Nullity Theorem. Formalized Mathematics, Tome 15 (2007) pp. 137-142. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_v10037-007-0015-6/

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.

[2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.

[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.

[4] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Formalized Mathematics, 5(4):485-492, 1996.

[5] Czesław Byliński. Binary operations applied to finite sequences. Formalized Mathematics, 1(4):643-649, 1990.

[6] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.

[7] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.

[8] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.

[9] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. Formalized Mathematics, 1(3):521-527, 1990.

[10] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.

[11] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.

[12] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.

[13] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.

[14] Serge Lang. Algebra. Springer, 3rd edition, 2005.

[15] Robert Milewski. Associated matrix of linear map. Formalized Mathematics, 5(3):339-345, 1996.

[16] Michał Muzalewski. Rings and modules - part II. Formalized Mathematics, 2(4):579-585, 1991.

[17] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.

[18] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.

[19] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.

[20] Andrzej Trybulec. Function domains and Fránkel operator. Formalized Mathematics, 1(3):495-500, 1990.

[21] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.

[22] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97-105, 1990.

[23] Wojciech A. Trybulec. Basis of vector space. Formalized Mathematics, 1(5):883-885, 1990.

[24] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.

[25] Wojciech A. Trybulec. Linear combinations in real linear space. Formalized Mathematics, 1(3):581-588, 1990.

[26] Wojciech A. Trybulec. Linear combinations in vector space. Formalized Mathematics, 1(5):877-882, 1990.

[27] Wojciech A. Trybulec. Non-contiguous substrings and one-to-one finite sequences. Formalized Mathematics, 1(3):569-573, 1990.

[28] Wojciech A. Trybulec. Operations on subspaces in vector space. Formalized Mathematics, 1(5):871-876, 1990.

[29] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579, 1990.

[30] Wojciech A. Trybulec. Subspaces and cosets of subspaces in vector space. Formalized Mathematics, 1(5):865-870, 1990.

[31] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.

[32] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.

[33] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

[34] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.

[35] Mariusz Żynel. The Steinitz theorem and the dimension of a vector space. Formalized Mathematics, 5(3):423-428, 1996.