Basic Properties of Determinants of Square Matrices over a Field 1
Karol Pąk
Formalized Mathematics, Tome 15 (2007), p. 17-25 / Harvested from The Polish Digital Mathematics Library

In this paper I present basic properties of the determinant of square matrices over a field and selected properties of the sign of a permutation. First, I define the sign of a permutation by the requirement [...] where p is any fixed permutation of a set with n elements. I prove that the sign of a product of two permutations is the same as the product of their signs and show the relation between signs and parity of permutations. Then I consider the determinant of a linear combination of lines, the determinant of a matrix with permutated lines and the determinant of a matrix with a repeated line. Finally, at the end I prove that the determinant of a product of two square matrices is equal to the product of their determinants.MML identifier: MATRIX11, version: 7.8.04 4.81.962

Publié le : 2007-01-01
EUDML-ID : urn:eudml:doc:267525
@article{bwmeta1.element.doi-10_2478_v10037-007-0003-x,
     author = {Karol P\k ak},
     title = {
      Basic Properties of Determinants of Square Matrices over a Field
      1
    },
     journal = {Formalized Mathematics},
     volume = {15},
     year = {2007},
     pages = {17-25},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_v10037-007-0003-x}
}
Karol Pąk. 
      Basic Properties of Determinants of Square Matrices over a Field
      1
    . Formalized Mathematics, Tome 15 (2007) pp. 17-25. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_v10037-007-0003-x/

[2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.

[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.

[4] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.

[5] Czesław Byliński. Binary operations applied to finite sequences. Formalized Mathematics, 1(4):643-649, 1990.

[6] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.

[7] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.

[8] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.

[9] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. Formalized Mathematics, 1(3):521-527, 1990.

[10] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.

[11] Czesław Byliński. Semigroup operations on finite subsets. Formalized Mathematics, 1(4):651-656, 1990.

[12] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.

[13] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.

[14] Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics, 2(4):475-480, 1991.

[15] Katarzyna Jankowska. Transpose matrices and groups of permutations. Formalized Mathematics, 2(5):711-717, 1991.

[16] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.

[17] Yozo Toda. The formalization of simple graphs. Formalized Mathematics, 5(1):137-144, 1996.

[18] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.

[19] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.

[20] Andrzej Trybulec. Semilattice operations on finite subsets. Formalized Mathematics, 1(2):369-376, 1990.

[21] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.

[22] Andrzej Trybulec and Agata Darmochwał. Boolean domains. Formalized Mathematics, 1(1):187-190, 1990.

[23] Wojciech A. Trybulec. Binary operations on finite sequences. Formalized Mathematics, 1(5):979-981, 1990.

[24] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.

[25] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.

[26] Wojciech A. Trybulec. Lattice of subgroups of a group. Frattini subgroup. Formalized Mathematics, 2(1):41-47, 1991.

[27] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.

[28] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

[29] Hiroshi Yamazaki, Yoshinori Fujisawa, and Yatsuka Nakamura. On replace function and swap function for finite sequences. Formalized Mathematics, 9(3):471-474, 2001.

[30] Xiaopeng Yue, Xiquan liang, and Zhongpin Sun. Some properties of some special matrices. Formalized Mathematics, 13(4):541-547, 2005.

[31] Katarzyna Zawadzka. The sum and product of finite sequences of elements of a field. Formalized Mathematics, 3(2):205-211, 1992.

[32] Katarzyna Zawadzka. The product and the determinant of matrices with entries in a field. Formalized Mathematics, 4(1):1-8, 1993.

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.