I have formalized the BCI-algebras closely following the book [6], sections 1.1 to 1.3, 1.6, 2.1 to 2.3, and 2.7. In this article the general theory of BCI-algebras and several classes of BCI-algebras are given. MML identifier: BCIALG 1, version: 7.8.04 4.81.962
@article{bwmeta1.element.doi-10_2478_v10037-007-0001-z, author = {Yuzhong Ding}, title = {Several Classes of BCI-algebras and their Properties}, journal = {Formalized Mathematics}, volume = {15}, year = {2007}, pages = {1-9}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_v10037-007-0001-z} }
Yuzhong Ding. Several Classes of BCI-algebras and their Properties. Formalized Mathematics, Tome 15 (2007) pp. 1-9. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_v10037-007-0001-z/
[1] Józef Białas. Group and field definitions. Formalized Mathematics, 1(3):433-439, 1990.
[2] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
[3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[4] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[5] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
[6] Jie Meng and YoungLin Liu. An Introduction to BCI-algebras. Shaanxi Scientific and Technological Press, 2001.
[7] Michał Muzalewski. Midpoint algebras. Formalized Mathematics, 1(3):483-488, 1990.
[8] Michał Muzalewski. Construction of rings and left-, right-, and bi-modules over a ring. Formalized Mathematics, 2(1):3-11, 1991.
[9] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
[10] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[11] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.
[12] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.
[13] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[14] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.