Near viability for fully nonlinear differential inclusions
Irina Căpraru ; Alina Lazu
Open Mathematics, Tome 12 (2014), p. 1447-1459 / Harvested from The Polish Digital Mathematics Library

We consider the nonlinear differential inclusion x′(t) ∈ Ax(t) + F(x(t)), where A is an m-dissipative operator on a separable Banach space X and F is a multi-function. We establish a viability result under Lipschitz hypothesis on F, that consists in proving the existence of solutions of the differential inclusion above, starting from a given set, which remain arbitrarily close to that set, if a tangency condition holds. To this end, we establish a kind of set-valued Gronwall’s lemma and a compactness theorem, which are extensions to the nonlinear case of similar results for semilinear differential inclusions. As an application, we give an approximate null controllability result.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:269131
@article{bwmeta1.element.doi-10_2478_s11533-014-0424-z,
     author = {Irina C\u apraru and Alina Lazu},
     title = {Near viability for fully nonlinear differential inclusions},
     journal = {Open Mathematics},
     volume = {12},
     year = {2014},
     pages = {1447-1459},
     zbl = {1307.34095},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-014-0424-z}
}
Irina Căpraru; Alina Lazu. Near viability for fully nonlinear differential inclusions. Open Mathematics, Tome 12 (2014) pp. 1447-1459. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-014-0424-z/

[1] Barbu V., Analysis and Control of Nonlinear Infinite Dimensional Systems, Math. Sci. Engrg., 190, Academic Press, Boston, 1993

[2] Bothe D., Flow invariance for perturbed nonlinear evolution equations, Abstr. Appl. Anal., 1996, 1(4), 417–433 http://dx.doi.org/10.1155/S1085337596000231 | Zbl 0954.34054

[3] Cârjă O., On the minimal time function for distributed control systems in Banach spaces, J. Optim. Theory Appl., 1984, 44(3), 397–406 http://dx.doi.org/10.1007/BF00935459 | Zbl 0536.49023

[4] Cârjă O., On constraint controllability of linear systems in Banach spaces, J. Optim. Theory Appl., 1988, 56(2), 215–225 http://dx.doi.org/10.1007/BF00939408 | Zbl 0625.93011

[5] Cârjă O., On the minimum time function and the minimum energy problem; a nonlinear case, Systems Control Lett., 2006, 55(7), 543–548 http://dx.doi.org/10.1016/j.sysconle.2005.11.005 | Zbl 1129.49304

[6] Cârjă O., Donchev T., Postolache V., Nonlinear evolution inclusions with one-sided Perron right-hand side, J. Dyn. Control Syst., 2013, 19(3), 439–456 http://dx.doi.org/10.1007/s10883-013-9187-2 | Zbl 1300.34144

[7] Cârjă O., Lazu A. I., Approximate weak invariance for differential inclusions in Banach spaces, J. Dyn. Control Syst., 2012, 18(2), 215–227 http://dx.doi.org/10.1007/s10883-012-9140-9 | Zbl 1267.34116

[8] Cârjă O., Monteiro Marques M. D. P., Weak tangency, weak invariance, and Carathéodory mappings., J. Dynam. Control Systems, 2002, 8(4), 445–461 http://dx.doi.org/10.1023/A:1020765401015 | Zbl 1025.34057

[9] Cârjă O., Necula M., Vrabie I. I., Viability, Invariance and Applications, North-Holland Math. Stud., 207, Elsevier Science B.V., Amsterdam, 2007

[10] Cârjă O., Necula M., Vrabie I. I., Necessary and sufficient conditions for viability for nonlinear evolution inclusions, Set-Valued Anal., 2008, 16(5–6), 701–731 http://dx.doi.org/10.1007/s11228-007-0063-7 | Zbl 1179.34068

[11] Cârjă O., Postolache V., Necessary and sufficient conditions for local invariance for semilinear differential inclusions, Set-Valued Var. Anal., 2011, 19(4), 537–554 http://dx.doi.org/10.1007/s11228-011-0173-0 | Zbl 1257.34045

[12] Clarke F. H., Ledyaev Yu. S., Radulescu M. L., Approximate invariance and differential inclusions in Hilbert spaces, J. Dynam. Control Systems, 1997, 3(4), 493–518 | Zbl 0951.49007

[13] Din Q., Donchev T., Kolev D., Filippov-Pliss lemma and m-dissipative differential inclusions, Journal of Global Optimization, 2013, 56(4), 1707–1717 http://dx.doi.org/10.1007/s10898-012-9963-7 | Zbl 1286.34088

[14] Donchev T., Multi-valued perturbations of m-dissipative differential inclusions in uniformly convex spaces, New Zealand J. Math., 2002, 31(1), 19–32

[15] Filippov A. F., Classical solutions of differential equations with multivalued right hand side, SIAM J. Control Optim., 1967, 5, 609–621 http://dx.doi.org/10.1137/0305040

[16] Frankowska H., A priori estimates for operational differential inclusions, J. Differential Equations, 1990, 84(1), 100–128 http://dx.doi.org/10.1016/0022-0396(90)90129-D

[17] Goreac D., Serea O.-S., Discontinuous control problems for non-convex dynamics and near viability for singularly perturbed control systems, Nonlinear Anal., 2010, 73(8), 2699–2713 http://dx.doi.org/10.1016/j.na.2010.06.050 | Zbl 1195.49007

[18] Lazu A. I., Postolache V., Approximate weak invariance for semilinear differential inclusions in Banach spaces, Cent. Eur. J. Math., 2011, 9(5), 1143–1155 http://dx.doi.org/10.2478/s11533-011-0051-x | Zbl 1247.34110

[19] Tolstonogov A. A., Properties of integral solutions of differential inclusions with m-accretive operators, Mat. Zametki, 1991, 49(6), 119–131, 159 | Zbl 0734.34020

[20] Vrabie I. I., Compactness Methods for Nonlinear Evolutions, 2nd ed., Pitman Monogr. Surveys Pure Appl. Math., 75, Longman, New York, 1995 | Zbl 0842.47040