Game saturation of intersecting families
Balázs Patkós ; Máté Vizer
Open Mathematics, Tome 12 (2014), p. 1382-1389 / Harvested from The Polish Digital Mathematics Library

We consider the following combinatorial game: two players, Fast and Slow, claim k-element subsets of [n] = 1, 2, …, n alternately, one at each turn, so that both players are allowed to pick sets that intersect all previously claimed subsets. The game ends when there does not exist any unclaimed k-subset that meets all already claimed sets. The score of the game is the number of sets claimed by the two players, the aim of Fast is to keep the score as low as possible, while the aim of Slow is to postpone the game’s end as long as possible. The game saturation numbers, gsatF(IIn,k) and gsatS(IIn,k), are the score of the game when both players play according to an optimal strategy in the cases when the game starts with Fast’s or Slow’s move, respectively. We prove that Ωk(nk/3-5)gsatF(𝕀n,k),gsatS(𝕀n,k)Ok(nk-k/2).

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:269668
@article{bwmeta1.element.doi-10_2478_s11533-014-0420-3,
     author = {Bal\'azs Patk\'os and M\'at\'e Vizer},
     title = {Game saturation of intersecting families},
     journal = {Open Mathematics},
     volume = {12},
     year = {2014},
     pages = {1382-1389},
     zbl = {1292.05255},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-014-0420-3}
}
Balázs Patkós; Máté Vizer. Game saturation of intersecting families. Open Mathematics, Tome 12 (2014) pp. 1382-1389. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-014-0420-3/

[1] Beck J., Combinatorial Games, Encyclopedia of Mathematics and its Applications, 114, Cambridge University Press, Cambridge, 2008 http://dx.doi.org/10.1017/CBO9780511735202

[2] Boros E., Füredi Z., Kahn J., Maximal intersecting families and affine regular polygons in PG(2, q), J. Combin. Theory Ser. A, 1989, 52(1), 1–9 http://dx.doi.org/10.1016/0097-3165(89)90057-5 | Zbl 0737.05003

[3] Cranston D.W., Kinnersley W.B., O S., West D.B., Game matching number of graphs, Discrete Appl. Math., 2013, 161(13–14), 1828–1836 http://dx.doi.org/10.1016/j.dam.2013.03.010

[4] Dow S.J., Drake D.A., Füredi Z., Larson J.A., A lower bound for the cardinality of a maximal family of mutually intersecting sets of equal size, Congr. Numer., 1985, 48, 47–48 | Zbl 0648.05001

[5] Erdős P., Ko C., Rado R., Intersection theorems for systems of finite sets, Quart. J. Math. Oxford Ser., 1961, 12, 313–318 http://dx.doi.org/10.1093/qmath/12.1.313 | Zbl 0100.01902

[6] Ferrara M., Jacobson M., Harris A., The game of F-saturator, Discrete Appl. Math., 2010, 158(3), 189–197 http://dx.doi.org/10.1016/j.dam.2009.09.014 | Zbl 1226.05179

[7] Fraenkel A.S., Combinatorial games, Electron. J. Combin., 2012, #DS2

[8] Füredi Z., On maximal intersecting families of finite sets, J. Combin. Theory Ser. A, 1980, 28(3), 282–289 http://dx.doi.org/10.1016/0097-3165(80)90071-0

[9] Füredi Z., Reimer D., Seress Á., Hajnal’s triangle-free game and extremal graph problems, Congr. Numer., 1991, 82, 123–128 | Zbl 0764.05043

[10] Hefetz D., Krivelevich M., Stojakovic M., personal communication

[11] Hefetz D., Krivelevich M., Stojakovic M., Szabó T., Positional Games, Oberwolfach Seminars, 44, Birkhäuser, Basel, 2014 | Zbl 1314.91003

[12] Kahn J., On a problem of Erdős and Lovász. II: n(r) = O(r), J. Amer. Math. Soc., 1994, 7(1), 125–143 | Zbl 0792.05080

[13] Mehta N., Seress Á., Connected, bounded degree, triangle avoidance games, Electron. J. Combin., 2012, 18(1), #193 | Zbl 1229.05210

[14] Meyer J.C., 23rd unsolved problem, In: Hypergraph Seminar, Lecture Notes in Math., 411, Springer, Berlin, 1974, 285–286 http://dx.doi.org/10.1007/BFb0066187

[15] Seress Á., On Hajnal’s triangle-free game, Graphs Combin., 1992, 8(1), 75–79 http://dx.doi.org/10.1007/BF01271710 | Zbl 0757.90096