Novikov homology, jump loci and Massey products
Toshitake Kohno ; Andrei Pajitnov
Open Mathematics, Tome 12 (2014), p. 1285-1304 / Harvested from The Polish Digital Mathematics Library

Let X be a finite CW complex, and ρ: π 1(X) → GL(l, ℂ) a representation. Any cohomology class α ∈ H 1(X, ℂ) gives rise to a deformation γ t of ρ defined by γ t (g) = ρ(g) exp(t〈α, g〉). We show that the cohomology of X with local coefficients γ gen corresponding to the generic point of the curve γ is computable from a spectral sequence starting from H*(X, ρ). We compute the differentials of the spectral sequence in terms of the Massey products and show that the spectral sequence degenerates in case when X is a Kähler manifold and ρ is semi-simple. If α ∈ H 1(X, ℝ) one associates to the triple (X, ρ, α) the twisted Novikov homology (a module over the Novikov ring). We show that the twisted Novikov Betti numbers equal the Betti numbers of X with coefficients in the local system γ gen. We investigate the dependence of these numbers on α and prove that they are constant in the complement to a finite number of proper vector subspaces in H 1(X, ℝ).

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:269518
@article{bwmeta1.element.doi-10_2478_s11533-014-0413-2,
     author = {Toshitake Kohno and Andrei Pajitnov},
     title = {Novikov homology, jump loci and Massey products},
     journal = {Open Mathematics},
     volume = {12},
     year = {2014},
     pages = {1285-1304},
     zbl = {1308.55003},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-014-0413-2}
}
Toshitake Kohno; Andrei Pajitnov. Novikov homology, jump loci and Massey products. Open Mathematics, Tome 12 (2014) pp. 1285-1304. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-014-0413-2/

[1] Arapura D., Higgs line bundles, Green-Lazarsfeld sets, and maps of Kähler manifolds to curves, Bull. Amer. Math. Soc. (N.S.), 1992, 26(2), 310–314 http://dx.doi.org/10.1090/S0273-0979-1992-00283-5 | Zbl 0759.14016

[2] Benson C., Gordon C.S., Kähler structures on compact solvmanifolds, Proc. Amer. Math. Soc., 1990, 108(4), 971–980 | Zbl 0689.53036

[3] Bousfield A.K., Guggenheim V.K.A.M., On PL de Rham Theory and Rational Homotopy Type, Mem. Amer. Math. Soc., 179, American Mathematical Society, Providence, 1976 | Zbl 0338.55008

[4] Deligne P., Griffiths Ph., Morgan J., Sullivan D., Real homotopy theory of Kähler manifolds, Invent. Math., 1975, 29(3), 245–274 http://dx.doi.org/10.1007/BF01389853 | Zbl 0312.55011

[5] Dimca A., Papadima S., Nonabelian cohomology jump loci from an analytic viewpoint, preprint avaliable at http://arxiv.org/abs/1206.3773

[6] Farber M., Lusternik-Schnirelman theory for closed 1-forms, Comment. Math. Helv., 2000, 75(1), 156–170 http://dx.doi.org/10.1007/s000140050117 | Zbl 0956.58006

[7] Farber M., Topology of closed 1-forms and their critical points, Topology, 2001, 40(2), 235–258 http://dx.doi.org/10.1016/S0040-9383(99)00059-2 | Zbl 0977.58011

[8] Friedl S., Vidussi S., A vanishing theorem for twisted Alexander polynomials with applications to symplectic 4-manifolds, preprint available at http://arxiv.org/abs/1205.2434 | Zbl 1285.57007

[9] Goda H., Pajitnov A.V., Twisted Novikov homology and circle-valued Morse theory for knots and links, Osaka J. Math., 2005, 42(3), 557–572 | Zbl 1083.57017

[10] Hu S., Homotopy Theory, Pure Appl. Math., 8, Academic Press, New York-London, 1959

[11] Kasuya H., Minimal models, formality, and hard Lefschetz properties of solvmanifolds with local systems, J. Differential Geom., 2013, 93(2), 269–297 | Zbl 06201318

[12] Massey W.S., Exact couples in algebraic topology, I, II, Ann. Math., 1952, 56(2), 363–396 http://dx.doi.org/10.2307/1969805 | Zbl 0049.24002

[13] Mostow G.D., Cohomology of topological groups and solvmanifolds, Ann. Math., 1961, 73(1), 20–48 http://dx.doi.org/10.2307/1970281 | Zbl 0103.26501

[14] Novikov S.P., Multivalued functions and functionals. An analogue of the Morse theory, Soviet Math. Dokl., 1981, 24, 222–226 | Zbl 0505.58011

[15] Novikov S.P., Bloch homology. Critical points of functions and closed 1-forms, Soviet Math. Dokl., 1986, 33(2), 551–555

[16] Pajitnov A.V., Novikov homology, twisted Alexander polynomials, and Thurston cones, St. Petersburg Math. J., 2007, 18(5), 809–835 http://dx.doi.org/10.1090/S1061-0022-07-00975-2

[17] Papadima S., Suciu A.I., Bieri-Neumann-Strebel-Renz invariants and homology jumping loci, Proc. Lond. Math. Soc., 2010, 100(3), 795–834 http://dx.doi.org/10.1112/plms/pdp045 | Zbl 1273.55003

[18] Papadima S., Suciu A.I., The spectral sequence of an equivariant chain complex and homology with local coefficients, Trans. Amer. Math. Soc., 2010, 362(5), 2685–2721 http://dx.doi.org/10.1090/S0002-9947-09-05041-7 | Zbl 1195.55005

[19] Pazhitnov A.V., An analytic proof of the real part of Novikov’s inequalities, Soviet Math. Dokl., 1987, 35(2), 456–457 | Zbl 0647.57025

[20] Pazhitnov A.V., Proof of Novikov’s conjecture on homology with local coefficients over a field of finite characteristic, Soviet Math. Dokl., 1988, 37(3), 824–828 | Zbl 0667.55003

[21] Pazhitnov A.V., On the sharpness of inequalities of Novikov type for manifolds with a free abelian fundamental group, Math. USSR-Sb., 1990, 68(2), 351–389 http://dx.doi.org/10.1070/SM1991v068n02ABEH001933 | Zbl 0708.57013

[22] Sawai H., A construction of lattices on certain solvable Lie groups, Topology Appl., 2007, 154(18), 3125–3134 http://dx.doi.org/10.1016/j.topol.2007.08.006 | Zbl 1138.53065

[23] Simpson C.T., Higgs bundles and local systems, Inst. Hautes Études Sci. Publ. Math., 1992, 75, 5–95 http://dx.doi.org/10.1007/BF02699491 | Zbl 0814.32003

[24] Sullivan D., Infinitesimal computations in topology, Inst. Hautes Études Sci. Publ. Math., 1977, 47, 269–331 http://dx.doi.org/10.1007/BF02684341 | Zbl 0374.57002

[25] Wells R.O. Jr., Differential Analysis on Complex Manifolds, Prentice-Hall Series in Modern Analysis, Prentice-Hall, Englewood Cliffs, 1973