Sharp weak-type inequalities for Fourier multipliers and second-order Riesz transforms
Adam Osękowski
Open Mathematics, Tome 12 (2014), p. 1198-1213 / Harvested from The Polish Digital Mathematics Library

We study sharp weak-type inequalities for a wide class of Fourier multipliers resulting from modulation of the jumps of Lévy processes. In particular, we obtain optimal estimates for second-order Riesz transforms, which lead to interesting a priori bounds for smooth functions on ℝd. The proofs rest on probabilistic methods: we deduce the above inequalities from the corresponding estimates for martingales. To obtain the lower bounds, we exploit the properties of laminates, important probability measures on the space of matrices of dimension 2×2, and some transference-type arguments.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:269645
@article{bwmeta1.element.doi-10_2478_s11533-014-0401-6,
     author = {Adam Os\k ekowski},
     title = {Sharp weak-type inequalities for Fourier multipliers and second-order Riesz transforms},
     journal = {Open Mathematics},
     volume = {12},
     year = {2014},
     pages = {1198-1213},
     zbl = {1290.42030},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-014-0401-6}
}
Adam Osękowski. Sharp weak-type inequalities for Fourier multipliers and second-order Riesz transforms. Open Mathematics, Tome 12 (2014) pp. 1198-1213. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-014-0401-6/

[1] Astala K., Faraco D., Székelyhidi L. Jr., Convex integration and the Lp theory of elliptic equations, Ann. Sc. Norm. Super. Pisa Cl. Sci., 2008, 7(1), 1–50 | Zbl 1164.30014

[2] Bañuelos R., Bielaszewski A., Bogdan K., Fourier multipliers for non-symmetric Lévy processes, Banach Center Publ., 95, Polish Academy of Sciences, Warsaw, 2011, 9–25 | Zbl 1242.42008

[3] Bañuelos R., Bogdan K., Lévy processes and Fourier multipliers, J. Funct. Anal., 2007, 250(1), 197–213 http://dx.doi.org/10.1016/j.jfa.2007.05.013 | Zbl 1123.42002

[4] Bañuelos R., Osekowski A., Martingales and sharp bounds for Fourier multipliers, Ann. Acad. Sci. Fenn. Math., 2012, 37(1), 251–263 http://dx.doi.org/10.5186/aasfm.2012.3710 | Zbl 1266.42020

[5] Bañuelos R., Wang G., Sharp inequalities for martingales with applications to the Beurling-Ahlfors and Riesz transformations, Duke Math. J., 1995, 80(3), 575–600 http://dx.doi.org/10.1215/S0012-7094-95-08020-X | Zbl 0853.60040

[6] Boros N., Székelyhidi L. Jr., Volberg A., Laminates meet Burkholder functions, J. Math. Pures Appl., 2013, 100(5), 687–700 http://dx.doi.org/10.1016/j.matpur.2013.01.017 | Zbl 1320.42010

[7] Burkholder D.L., An extension of a classical martingale inequality, In: Probability Theory and Harmonic Analysis, Ohio, May 10–12, 1983, Monogr. Textbooks Pure Appl. Math., 98, Marcel Dekker, New York, 1986, 21–30

[8] Choi K.P., A sharp inequality for martingale transforms and the unconditional basis constant of a monotone basis in Lp(0, 1), Trans. Amer. Math. Soc., 1992, 330(2), 509–529 | Zbl 0747.60042

[9] Conti S., Faraco D., Maggi F., A new approach to counterexamples to L1 estimates: Korn’s inequality, geometric rigidity, and regularity for gradients of separately convex functions, Arch. Ration. Mech. Anal., 2005, 175(2), 287–300 http://dx.doi.org/10.1007/s00205-004-0350-5 | Zbl 1080.49026

[10] Davis B., On the weak type (1, 1) inequality for conjugate functions, Proc. Amer. Math. Soc., 1974, 44(2), 307–311 | Zbl 0259.42016

[11] Dellacherie C., Meyer P.-A., Probabilities and Potential B, North-Holland Math. Stud., 72, North-Holland, Amsterdam, 1982

[12] Geiss S., Mongomery-Smith S., Saksman E., On singular integral and martingale transforms, Trans. Amer. Math. Soc., 2010, 362(2), 553–575 http://dx.doi.org/10.1090/S0002-9947-09-04953-8 | Zbl 1196.60078

[13] Iwaniec T., Martin G., Riesz transforms and related singular integrals, J. Reine Angew. Math., 1996, 473, 25–57 | Zbl 0847.42015

[14] Janakiraman P., Best weak-type (p, p) constants, 1 < p < 2, for orthogonal harmonic functions and martingales, Illinois J. Math., 2004, 48(3), 909–921 | Zbl 1063.31002

[15] Kirchheim B., Rigidity and Geometry of Microstructures, Habilitation thesis, University of Leipzig, 2003, available at http://www.mis.mpg.de/publications/other-series/ln/lecturenote-1603.html

[16] Kirchheim B., Müller S., Šverák V., Studying nonlinear pde by geometry in matrix space, In: Geometric Analysis and Nonlinear Partial Differential Equations, Springer, Berlin, 2003, 347–395 http://dx.doi.org/10.1007/978-3-642-55627-2_19

[17] Müller S., Šverák V., Convex integration for Lipschitz mappings and counterexamples to regularity, Ann. Math., 2003, 157(3), 715–742 http://dx.doi.org/10.4007/annals.2003.157.715 | Zbl 1083.35032

[18] Osekowski A., Inequalities for dominated martingales, Bernoulli, 2007, 13(1), 54–79 http://dx.doi.org/10.3150/07-BEJ5151

[19] Osekowski A., On relaxing the assumption of differential subordination in some martingale inequalities, Electron. Commun. Probab., 2011, 16, 9–21 http://dx.doi.org/10.1214/ECP.v16-1593 | Zbl 1231.60036

[20] Osekowski A., Sharp weak type inequalities for the Haar system and related estimates for nonsymmetric martingale transforms, Proc. Amer. Math. Soc., 2012, 140(7), 2513–2526 http://dx.doi.org/10.1090/S0002-9939-2011-11093-1 | Zbl 1274.60137

[21] Osekowski A., Sharp logarithmic inequalities for Riesz transforms, J. Funct. Anal., 2012, 263(1), 89–108 http://dx.doi.org/10.1016/j.jfa.2012.04.007 | Zbl 1247.42016

[22] Osekowski A., Logarithmic inequalities for Fourier multipliers, Math. Z., 2013, 274(1–2), 515–530 http://dx.doi.org/10.1007/s00209-012-1083-z | Zbl 1272.42009

[23] Pichorides S.K., On the best values of the constants in the theorems of M. Riesz, Zygmund and Kolmogorov, Studia Math., 1972, 44, 165–179 | Zbl 0238.42007

[24] Stein E.M., Singular Integrals and Differentiability Properties of Functions, Princeton Math. Ser., 30, Princeton University Press, Princeton, 1970 | Zbl 0207.13501

[25] Székelyhidi L. Jr., Counterexamples to elliptic regularity and convex integration, In: The Interaction of Analysis and Geometry, Novosibirsk, August 23–September 3, 2004, Contemp. Math., 424, American Mathematical Society, Providence, 227–245

[26] Wang G., Differential subordination and strong differential subordination for continuous-time martingales and related sharp inequalities, Ann. Probab., 1995, 23(2), 522–551 http://dx.doi.org/10.1214/aop/1176988278 | Zbl 0832.60055