On the asymptotic form of convex hulls of Gaussian random fields
Youri Davydov ; Vygantas Paulauskas
Open Mathematics, Tome 12 (2014), p. 711-720 / Harvested from The Polish Digital Mathematics Library

We consider a centered Gaussian random field X = X t : t ∈ T with values in a Banach space 𝔹 defined on a parametric set T equal to ℝm or ℤm. It is supposed that the distribution of X t is independent of t. We consider the asymptotic behavior of closed convex hulls W n = convX t : t ∈ T n, where (T n) is an increasing sequence of subsets of T. We show that under some conditions of weak dependence for the random field under consideration and some sequence (b n)n≥1 with probability 1, (in the sense of Hausdorff distance), where the limit set is the concentration ellipsoid of . The asymptotic behavior of the mathematical expectations Ef(W n), where f is some function, is also studied.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:269078
@article{bwmeta1.element.doi-10_2478_s11533-013-0375-9,
     author = {Youri Davydov and Vygantas Paulauskas},
     title = {On the asymptotic form of convex hulls of Gaussian random fields},
     journal = {Open Mathematics},
     volume = {12},
     year = {2014},
     pages = {711-720},
     zbl = {06308897},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0375-9}
}
Youri Davydov; Vygantas Paulauskas. On the asymptotic form of convex hulls of Gaussian random fields. Open Mathematics, Tome 12 (2014) pp. 711-720. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0375-9/

[1] Aliprantis C.D., Border K.C., Infinite Dimensional Analysis, 3rd ed., Springer, Berlin, 2006

[2] Berman S.M., A law of large numbers for the maximum in a stationary Gaussian sequence, Ann. Math. Statist., 1962, 33, 93–97 http://dx.doi.org/10.1214/aoms/1177704714 | Zbl 0109.11803

[3] Davydov Y., On convex hull of Gaussian samples, Lith. Math. J., 2011, 51(2), 171–179 http://dx.doi.org/10.1007/s10986-011-9117-5 | Zbl 1227.60034

[4] Davydov Y., Dombry C., Asymptotic behavior of the convex hull of a stationary Gaussian process, Lith. Math. J., 2012, 52(4), 363–368 http://dx.doi.org/10.1007/s10986-012-9179-z | Zbl 1260.60052

[5] Fernique X., Régularité de processus gaussiens, Invent. Math., 1971, 12(4), 304–320 http://dx.doi.org/10.1007/BF01403310 | Zbl 0217.21104

[6] Goodman V., Characteristics of normal samples, Ann. Probab., 1988, 16(3), 1281–1290 http://dx.doi.org/10.1214/aop/1176991690 | Zbl 0712.60006

[7] Leadbetter M.R., Lindgren G., Rootzén H., Extremes and Related Properties of Random Sequences and Processes, Springer Ser. Statist., Springer, New York-Berlin, 1983 http://dx.doi.org/10.1007/978-1-4612-5449-2 | Zbl 0518.60021

[8] Ledoux M., Talagrand M., Probability in Banach Spaces, Classics Math., Springer, Berlin, 1991 | Zbl 0748.60004

[9] Majumdar S.N., Comtet A., Randon-Furling J., Random convex hulls and extreme value statistics, J. Stat. Phys., 2010, 138(6), 955–1009 http://dx.doi.org/10.1007/s10955-009-9905-z | Zbl 1188.82024

[10] Mittal Y., Ylvisaker D., Strong law for the maxima of stationary Gaussian processes, Ann. Probab., 1976, 4(3), 357–371 http://dx.doi.org/10.1214/aop/1176996085 | Zbl 0341.60024

[11] Schneider R., Convex Bodies: the Brunn-Minkowski Theory, Encyclopedia Math. Appl., 44, Cambridge University Press, Cambridge, 1993 | Zbl 0798.52001

[12] Schneider R., Recent results on random polytopes, Boll. Unione Mat. Ital., 2008, 9(1), 17–39 | Zbl 1206.52011