Properties of derivations on some convolution algebras
Thomas Pedersen
Open Mathematics, Tome 12 (2014), p. 742-751 / Harvested from The Polish Digital Mathematics Library

For all convolution algebras L 1[0, 1); L loc1 and A(ω) = ∩n L 1(ωn), the derivations are of the form D μ f = Xf * μ for suitable measures μ, where (Xf)(t) = tf(t). We describe the (weakly) compact as well as the (weakly) Montel derivations on these algebras in terms of properties of the measure μ. Moreover, for all these algebras we show that the extension of D μ to a natural dual space is weak-star continuous.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:269502
@article{bwmeta1.element.doi-10_2478_s11533-013-0373-y,
     author = {Thomas Pedersen},
     title = {Properties of derivations on some convolution algebras},
     journal = {Open Mathematics},
     volume = {12},
     year = {2014},
     pages = {742-751},
     zbl = {1304.46043},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0373-y}
}
Thomas Pedersen. Properties of derivations on some convolution algebras. Open Mathematics, Tome 12 (2014) pp. 742-751. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0373-y/

[1] Bonet J., Lindström M., Spaces of operators between Fréchet spaces, Math. Proc. Cambridge Philos. Soc., 1994, 115(1), 133–144 http://dx.doi.org/10.1017/S0305004100071978 | Zbl 0804.46011

[2] Choi Y., Heath M.J., Translation-finite sets and weakly compact derivations from ℓ1(ℤ+) to its dual, Bull. Lond. Math. Soc., 2010, 42(3), 429–440 http://dx.doi.org/10.1112/blms/bdq003 | Zbl 1204.43002

[3] Choi Y., Heath M.J., Characterizing derivations from the disk algebra to its dual, Proc. Amer. Math. Soc., 2011, 139(3), 1073–1080 http://dx.doi.org/10.1090/S0002-9939-2010-10520-8 | Zbl 1251.46026

[4] Conway J.B., A Course in Functional Analysis, Grad. Texts in Math., 96, Springer, New York, 1985 | Zbl 0558.46001

[5] Dales H.G., Banach Algebras and Automatic Continuity, London Math. Soc. Monogr. Ser., 24, Oxford University Press, New York, 2000 | Zbl 0981.46043

[6] Despic M., Ghahramani F., Grabiner S., Weighted convolution algebras without bounded approximate identities, Math. Scand., 1995, 76(2), 257–272 | Zbl 0849.46035

[7] Edwards R.E., Functional Analysis, Holt, Rinehart and Winston, New York, 1965 | Zbl 0182.16101

[8] Ghahramani F., McClure J.P., Automorphisms and derivations of a Fréchet algebra of locally integrable functions, Studia Math., 1992, 103(1), 51–69 | Zbl 0813.46043

[9] Grabiner S., Homomorphisms of the algebra of locally integrable functions on the half line, J. Aust. Math. Soc., 2006, 81(2), 253–278 http://dx.doi.org/10.1017/S1446788700015871 | Zbl 1116.43003

[10] Jewell N.P., Sinclair A.M., Epimorphisms and derivations on L 1(0, 1) are continuous, Bull. London Math. Soc., 1976, 8(2), 135–139 http://dx.doi.org/10.1112/blms/8.2.135 | Zbl 0324.46048

[11] Kamowitz H., Scheinberg S., Derivations and automorphisms of L 1(0, 1), Trans. Amer. Math. Soc., 1969, 135, 415–427 | Zbl 0172.41703

[12] Pedersen T.V., A class of weighted convolution Fréchet algebras, In: Banach Algebras 2009, Banach Center Publ., 91, Polish Academy of Sciences, Warsaw, 2010, 247–259 | Zbl 1216.46048

[13] Pedersen T.V., Compactness and weak-star continuity of derivations on weighted convolution algebras, J. Math. Anal. Appl., 2013, 397(1), 402–414 http://dx.doi.org/10.1016/j.jmaa.2012.07.057 | Zbl 1256.43001

[14] Pérez Carreras P., Bonet J., Barrelled Locally Convex Spaces, North-Holland Mathematics Studies, 131, North-Holland, Amsterdam, 1987 | Zbl 0614.46001

[15] Robertson A.P., Robertson W., Topological Vector Spaces, 2nd ed., Cambridge Tracts in Mathematics and Mathematical Physics, 53, Cambridge University Press, London, 1973 | Zbl 0251.46002