Countable contraction mappings in metric spaces: invariant sets and measure
María Barrozo ; Ursula Molter
Open Mathematics, Tome 12 (2014), p. 593-602 / Harvested from The Polish Digital Mathematics Library

We consider a complete metric space (X, d) and a countable number of contraction mappings on X, F = {F i: i ∈ ℕ}. We show the existence of a smallest invariant set (with respect to inclusion) for F. If the maps F i are of the form F i(x) = r i x + b i on X = ℝd, we prove a converse of the classic result on contraction mappings, more precisely, there exists a unique bounded invariant set if and only if r = supi r i is strictly smaller than 1. Further, if ρ = {ρ k}k∈ℕ is a probability sequence, we show that if there exists an invariant measure for the system (F, ρ), then its support must be precisely this smallest invariant set. If in addition there exists any bounded invariant set, this invariant measure is unique, even though there may be more than one invariant set.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:269455
@article{bwmeta1.element.doi-10_2478_s11533-013-0371-0,
     author = {Mar\'\i a Barrozo and Ursula Molter},
     title = {Countable contraction mappings in metric spaces: invariant sets and measure},
     journal = {Open Mathematics},
     volume = {12},
     year = {2014},
     pages = {593-602},
     zbl = {1286.28007},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0371-0}
}
María Barrozo; Ursula Molter. Countable contraction mappings in metric spaces: invariant sets and measure. Open Mathematics, Tome 12 (2014) pp. 593-602. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0371-0/

[1] Bandt C., Self-similar sets. I. Topological Markov chains and mixed self-similar sets, Math. Nachr., 1989, 142, 107–123 http://dx.doi.org/10.1002/mana.19891420107 | Zbl 0707.28004

[2] Barnsley M.F., Demko S., Iterated function systems and the global construction of fractals, Proc. Roy. Soc. London Ser. A, 1985, 399(1817), 243–275 http://dx.doi.org/10.1098/rspa.1985.0057 | Zbl 0588.28002

[3] Falconer K.J., The Geometry of Fractal Sets, Cambridge Tracts in Math., 85, Cambridge University Press, Cambridge, 1986 | Zbl 0587.28004

[4] Falconer K., Fractal Geometry, John Wiley & Sons, Chichester, 1990

[5] Hille M.R., Remarks on limit sets of infinite iterated function systems, Monatsh. Math., 2012, 168(2), 215–237 http://dx.doi.org/10.1007/s00605-011-0357-6 | Zbl 1272.28006

[6] Hutchinson J.E., Fractals and self-similarity, Indiana Univ. Math. J., 1981, 30(5), 713–747 http://dx.doi.org/10.1512/iumj.1981.30.30055 | Zbl 0598.28011

[7] Kravchenko A.S., Completeness of the space of separable measures in the Kantorovich-Rubinshtein metric, Siberian Math. J., 2006, 47(1), 68–76 http://dx.doi.org/10.1007/s11202-006-0009-6

[8] Mattila P., Geometry of Sets and Measures in Euclidean Spaces, Cambridge Stud. Adv. Math., 44, Cambridge University Press, Cambridge, 1995 http://dx.doi.org/10.1017/CBO9780511623813

[9] Mauldin R.D., Infinite iterated function systems: theory and applications, In: Fractal Geometry and Stochastics, Progr. Probab., 37, Birkhäuser, Basel, 1995, 91–110 http://dx.doi.org/10.1007/978-3-0348-7755-8_5 | Zbl 0841.28009

[10] Mauldin R.D., Urbanski M., Dimensions and measures in infinite iterated function systems, Proc. London Math. Soc., 1996, 73(1), 105–154 http://dx.doi.org/10.1112/plms/s3-73.1.105 | Zbl 0852.28005

[11] Mauldin R.D., Williams S.C., Random recursive constructions: asymptotic geometric and topological properties, Trans. Amer. Math. Soc., 1986, 295(1), 325–346 http://dx.doi.org/10.1090/S0002-9947-1986-0831202-5 | Zbl 0625.54047

[12] Mihail A., Miculescu R., The shift space for an infinite iterated function system, Math. Rep. (Bucur.), 2009, 11(61)(1), 21–32 | Zbl 1199.28030

[13] Secelean N.A., The existence of the attractor of countable iterated function systems, Mediterr. J. Math., 2012, 9(1), 61–79 http://dx.doi.org/10.1007/s00009-011-0116-x | Zbl 1242.28014