Some problems on narrow operators on function spaces
Mikhail Popov ; Evgenii Semenov ; Diana Vatsek
Open Mathematics, Tome 12 (2014), p. 476-482 / Harvested from The Polish Digital Mathematics Library

It is known that if a rearrangement invariant (r.i.) space E on [0, 1] has an unconditional basis then every linear bounded operator on E is a sum of two narrow operators. On the other hand, for the classical space E = L 1[0, 1] having no unconditional basis the sum of two narrow operators is a narrow operator. We show that a Köthe space on [0, 1] having “lots” of nonnarrow operators that are sum of two narrow operators need not have an unconditional basis. However, we do not know if such an r.i. space exists. Another result establishes sufficient conditions on an r.i. space E under which the orthogonal projection onto the closed linear span of the Rademacher system is a hereditarily narrow operator. This, in particular, answers a question of the first named author and Randrianantoanina (Problem 11.9 in [Popov M., Randrianantoanina B., Narrow Operators on Function Spaces and Vector Lattices, de Gruyter Stud. Math., 45, Walter de Gruyter, Berlin, 2013]).

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:269495
@article{bwmeta1.element.doi-10_2478_s11533-013-0358-x,
     author = {Mikhail Popov and Evgenii Semenov and Diana Vatsek},
     title = {Some problems on narrow operators on function spaces},
     journal = {Open Mathematics},
     volume = {12},
     year = {2014},
     pages = {476-482},
     zbl = {1293.46013},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0358-x}
}
Mikhail Popov; Evgenii Semenov; Diana Vatsek. Some problems on narrow operators on function spaces. Open Mathematics, Tome 12 (2014) pp. 476-482. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0358-x/

[1] Albiac F., Kalton N.J., Topics in Banach Space Theory, Grad. Texts in Math., 233, Springer, New York, 2006 | Zbl 1094.46002

[2] Burkholder D.L., A nonlinear partial differential equation and the unconditional constant of the Haar system in L p, Bull. Amer. Math. Soc., 1982, 7(3), 591–595 http://dx.doi.org/10.1090/S0273-0979-1982-15061-3 | Zbl 0504.46022

[3] Kadets V.M., Popov M.M., Some stability theorems on narrow operators acting in L 1 and C(K), Mat. Fiz. Anal. Geom., 2003, 10(1), 49–60 | Zbl 1069.46006

[4] Krasikova I.V., A note on narrow operators in L 1, Mat. Stud., 2009, 31(1), 102–106 | Zbl 1199.47153

[5] Lindenstrauss J., Tzafriri L., Classical Banach Spaces, I, Ergeb. Math. Grenzgeb., 92, Springer, Berlin, 1977 http://dx.doi.org/10.1007/978-3-642-66557-8

[6] Lindenstrauss J., Tzafriri L., Classical Banach Spaces, II, Ergeb. Math. Grenzgeb., 97, Springer, Berlin, 1979 http://dx.doi.org/10.1007/978-3-662-35347-9

[7] Maslyuchenko O.V., Mykhaylyuk V.V., Popov M.M., A lattice approach to narrow operators, Positivity, 2009, 13(3), 459–495 http://dx.doi.org/10.1007/s11117-008-2193-z | Zbl 1183.47033

[8] Mykhaylyuk V.V., Popov M.M., On sums of narrow operators on Köthe function spaces, J. Math. Anal. Appl., 2013, 404(2), 554–561 http://dx.doi.org/10.1016/j.jmaa.2013.03.008 | Zbl 1316.47034

[9] Plichko A.M., Popov M.M., Symmetric Function Spaces on Atomless Probability Spaces, Dissertationes Math. (Rozprawy Mat.), 306, Polish Academy of Sciences, Warsaw, 1990

[10] Popov M.M., Reproducibility of sequences in Banach spaces, Naukoviĭ Vısnik Chernivets’kogo Unıversitetu, Matematika, 2003, 160, 104–108 (in Ukrainian)

[11] Popov M., Randrianantoanina B., Narrow Operators on Function Spaces and Vector Lattices, de Gruyter Stud. Math., 45, Walter de Gruyter, Berlin, 2013 http://dx.doi.org/10.1515/9783110263343 | Zbl 1258.47002

[12] Rodin V.A., Semyonov E.M., Rademacher series in symmetric spaces, Anal. Math., 1975, 1(3), 207–222 http://dx.doi.org/10.1007/BF01930966 | Zbl 0315.46031