Invariant connections and invariant holomorphic bundles on homogeneous manifolds
Indranil Biswas ; Andrei Teleman
Open Mathematics, Tome 12 (2014), p. 1-13 / Harvested from The Polish Digital Mathematics Library

Let X be a differentiable manifold endowed with a transitive action α: A×X→X of a Lie group A. Let K be a Lie group. Under suitable technical assumptions, we give explicit classification theorems, in terms of explicit finite dimensional quotients, of three classes of objects: equivalence classes of α-invariant K-connections on X α-invariant gauge classes of K-connections on X, andα-invariant isomorphism classes of pairs (Q,P) consisting of a holomorphic Kℂ-bundle Q → X and a K-reduction P of Q (when X has an α-invariant complex structure).

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:269764
@article{bwmeta1.element.doi-10_2478_s11533-013-0330-9,
     author = {Indranil Biswas and Andrei Teleman},
     title = {Invariant connections and invariant holomorphic bundles on homogeneous manifolds},
     journal = {Open Mathematics},
     volume = {12},
     year = {2014},
     pages = {1-13},
     zbl = {1288.53040},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0330-9}
}
Indranil Biswas; Andrei Teleman. Invariant connections and invariant holomorphic bundles on homogeneous manifolds. Open Mathematics, Tome 12 (2014) pp. 1-13. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0330-9/

[1] Biswas I., Homogeneous principal bundles over the upper half-plane, Kyoto J. Math., 2010, 50(2), 325–363 http://dx.doi.org/10.1215/0023608X-2009-016 | Zbl 1204.53015

[2] Biswas I., Classification of homogeneous holomorphic hermitian principal bundles over G/K, Forum Math. (in press), DOI: 10.1515/forum-2012-0131

[3] Chevalley C., Eilenberg S., Cohomology theory of Lie groups and Lie algebras, Trans. Amer. Math. Soc., 1948, 63(1), 85–124 http://dx.doi.org/10.1090/S0002-9947-1948-0024908-8 | Zbl 0031.24803

[4] Donaldson S.K., Kronheimer P.B., The Geometry of Four-Manifolds, Oxford Math. Monogr., Oxford University Press, New York, 1990 | Zbl 0820.57002

[5] Greub W., Halperin S., Vanstone R., Connections, Curvature, and Cohomology, II, Pure Appl. Math., 47-II, Academic Press, New York-London, 1973

[6] Hofmann K.H., Morris S.A., The Structure of Compact Groups, 2nd ed., de Gruyter Stud. Math., 25, Walter de Gruyter, Berlin, 2006 | Zbl 1139.22001

[7] Husemoller D., Fibre Bundles, 3rd ed., Grad. Texts in Math., 20, Springer, New York, 1994 http://dx.doi.org/10.1007/978-1-4757-2261-1

[8] Kobayashi S., Nomizu K., Foundations of Differential Geometry, I, Interscience Tracts in Pure and Applied Mathematics, 15(I), Interscience, New York-London, 1963

[9] Kobayashi S., Nomizu K., Foundations of Differential Geometry, II, Interscience Tracts in Pure and Applied Mathematics, 15(II), Interscience, New York-London, 1969 | Zbl 0175.48504

[10] Lübke M., Teleman A., The Universal Kobayashi-Hitchin Correspondence on Hermitian Manifolds, Mem. Amer. Math. Soc., 183(863), American Mathematical Society, Providence, 2006 | Zbl 1103.53014

[11] Wang H., On invariant connections over a principal fibre bundle, Nagoya Math. J., 1958, 13, 1–19 | Zbl 0086.36502

[12] Yang K., Almost Complex Homogeneous Spaces and their Submanifolds, World Scientific, Singapore, 1987 | Zbl 0645.53001