The free one-generated left distributive algebra: basics and a simplified proof of the division algorithm
Richard Laver ; Sheila Miller
Open Mathematics, Tome 11 (2013), p. 2150-2175 / Harvested from The Polish Digital Mathematics Library

The left distributive law is the law a· (b· c) = (a·b) · (a· c). Left distributive algebras have been classically used in the study of knots and braids, and more recently free left distributive algebras have been studied in connection with large cardinal axioms in set theory. We provide a survey of results on the free left distributive algebra on one generator, A, and a new, simplified proof of the existence of a normal form for terms in A. Topics included are: the confluence of A, the linearity of the iterated left division ordering

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:269137
@article{bwmeta1.element.doi-10_2478_s11533-013-0290-0,
     author = {Richard Laver and Sheila Miller},
     title = {The free one-generated left distributive algebra: basics and a simplified proof of the division algorithm},
     journal = {Open Mathematics},
     volume = {11},
     year = {2013},
     pages = {2150-2175},
     zbl = {06271140},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0290-0}
}
Richard Laver; Sheila Miller. The free one-generated left distributive algebra: basics and a simplified proof of the division algorithm. Open Mathematics, Tome 11 (2013) pp. 2150-2175. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0290-0/

[1] Artin E., Theorie der Zöpfe, Abh. Math. Sem. Univ. Hamburg, 1925, 4(1), 47–72 http://dx.doi.org/10.1007/BF02950718 | Zbl 51.0450.01

[2] Birman J.S., Braids, Links, and Mapping Class Groups, Ann. of Math. Stud., 82, Princeton University Press, Princeton, 1974

[3] Brieskorn E., Automorphic sets and braids and singularities, In: Braids, Santa Cruz, July 13–26, 1986, Contemp. Math., 78, American Mathematical Society, Providence, 1988, 45–115

[4] Burckel S., The wellordering on positive braids, J. Pure Appl. Algebra, 1997, 120(1), 1–17 http://dx.doi.org/10.1016/S0022-4049(96)00072-2 | Zbl 0958.20032

[5] Dehornoy P., Braid groups and left distributive operations, Trans. Amer. Math. Soc., 1994, 345(1), 115–150 http://dx.doi.org/10.1090/S0002-9947-1994-1214782-4 | Zbl 0837.20048

[6] Dehornoy P., Braids and Self-Distributivity, Progr. Math., 192, Birkhäuser, Basel, 2000 http://dx.doi.org/10.1007/978-3-0348-8442-6

[7] Dehornoy P., Dynnikov I., Rolfsen D., Wiest B., Why are Braids Orderable?, Panor. Syntheses, 14, Société Mathématique de France, Paris, 2002 | Zbl 1048.20021

[8] Fenn R., Rourke C., Racks and links in codimension two, J. Knot Theory Ramifications, 1992, 1(4), 343–406 http://dx.doi.org/10.1142/S0218216592000203 | Zbl 0787.57003

[9] Hurwitz A., Ueber Riemann’sche Flächen wit gegebenen Verzweigungspunkten, Math. Ann., 1891, 39(1), 1–60 http://dx.doi.org/10.1007/BF01199469

[10] Joyce D., A classifying invariant of knots, the knot quandle, J. Pure Appl. Algebra, 1982, 23(1), 37–65 http://dx.doi.org/10.1016/0022-4049(82)90077-9 | Zbl 0474.57003

[11] Kunen K., Elementary embeddings and infinitary combinatorics, J. Symbolic Logic, 1971, 36(3), 407–413 http://dx.doi.org/10.2307/2269948 | Zbl 0272.02087

[12] Larue D.M., Braid words and irreflexivity, Algebra Universalis, 1994, 31(1), 104–112 http://dx.doi.org/10.1007/BF01188182 | Zbl 0793.08007

[13] Laver R., A division algorithm for the free left distributive algebra, In: Logic Colloquium’ 90, Helsinki, July 15–22, 1990, Lecture Notes Logic, 2, Springer, Berlin, 1993, 155–162 | Zbl 0809.08004

[14] Laver R., The left distributive law and the freeness of an algebra of elementary embeddings, Adv. Math., 1992, 91(2), 209–231 http://dx.doi.org/10.1016/0001-8708(92)90016-E | Zbl 0822.03030

[15] Laver R., On the algebra of elementary embeddings of a rank into itself, Adv. Math., 1995, 110(2), 334–346 http://dx.doi.org/10.1006/aima.1995.1014 | Zbl 0822.03031

[16] Laver R., Braid group actions on left distributive structures, and well orderings in the braid groups, J. Pure Appl. Algebra, 1996, 108(1), 81–98 http://dx.doi.org/10.1016/0022-4049(95)00147-6 | Zbl 0859.20029

[17] Laver R., Miller S.K., Left division in the free left distributive algebra on one generator, J. Pure Appl. Algebra, 2010, 215(3), 276–282 http://dx.doi.org/10.1016/j.jpaa.2010.04.019 | Zbl 1208.08003

[18] Laver R., Moody J.A., Well-foundedness conditions connected with left-distributivity, Algebra Univsersalis, 2002, 47(1), 65–68 http://dx.doi.org/10.1007/s00012-002-8175-2 | Zbl 1058.20055

[19] Miller S.K., Free Left Distributive Algebras, PhD thesis, University of Colorado, Boulder, 2007

[20] Miller S.K., Free left distributive algebras on κ generators (in preparation)