Non-hyperbolicity in random regular graphs and their traffic characteristics
Gabriel Tucci
Open Mathematics, Tome 11 (2013), p. 1593-1597 / Harvested from The Polish Digital Mathematics Library

In this paper we prove that random d-regular graphs with d ≥ 3 have traffic congestion of the order O(n logd−13 n) where n is the number of nodes and geodesic routing is used. We also show that these graphs are not asymptotically δ-hyperbolic for any non-negative δ almost surely as n → ∞.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:269768
@article{bwmeta1.element.doi-10_2478_s11533-013-0268-y,
     author = {Gabriel Tucci},
     title = {Non-hyperbolicity in random regular graphs and their traffic characteristics},
     journal = {Open Mathematics},
     volume = {11},
     year = {2013},
     pages = {1593-1597},
     zbl = {1277.05153},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0268-y}
}
Gabriel Tucci. Non-hyperbolicity in random regular graphs and their traffic characteristics. Open Mathematics, Tome 11 (2013) pp. 1593-1597. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0268-y/

[1] Baryshnikov Yu., Tucci G.H., Asymptotic traffic flow in a hyperbolic network: definition and properties of the core, preprint available at http://arxiv.org/abs/1010.3304

[2] Baryshnikov Yu., Tucci G.H., Asymptotic traffic flow in a hyperbolic network: non-uniform traffic, preprint available at http://arxiv.org/abs/1010.3305

[3] Benjamini I., Expanders are not hyperbolic, Israel J. Math., 1998, 108, 33–36 http://dx.doi.org/10.1007/BF02783040 | Zbl 0915.05072

[4] Benjamini I., Hoppen C., Ofek E., Prałat P., Wormald N., Geodesics and almost geodesic cycles in random regular graphs, J. Graph Theory, 2011, 66(2), 115–136 http://dx.doi.org/10.1002/jgt.20496 | Zbl 1218.05074

[5] Bollobás B., Fernandez de la Vega W., The diameter of random regular graphs, Combinatorica, 1982, 2(2), 125–134 http://dx.doi.org/10.1007/BF02579310 | Zbl 0505.05053

[6] Brisdon M.R., Haefliger A., Metric Spaces of Non-Positive Curvature, Grundlehren Math. Wiss., 319, Springer, Berlin, 1999

[7] Gromov M., Hyperbolic groups, In: Essays in Group Theory, Math. Sci. Res. Inst. Publ., 8, Springer, New York, 1987, 75–263 http://dx.doi.org/10.1007/978-1-4613-9586-7_3

[8] Jonckheere E.A., Lohsoonthorn P., A hyperbolic geometry approach to multi-path routing, In: Proceedings of the 10th Mediterranean Conference on Control and Automation, Lisbon, July 9-12, 2002, available at http://med.ee.nd.edu/MED10/pdf/373.pdf

[9] Jonckheere E., Lohsoonthorn P., Geometry of network security, In: Proceedings of the 2004 American Control Conference, 6, 2004, available at http://eudoxus2.usc.edu/CHAOS/paper4.pdf

[10] Jonckheere E.A., Lou M., Hespanha J., Barooah P., Effective resistance of Gromov-hyperbolic graphs: application to asymptotic sensor network problems, In: Proceedings of the 46th IEEE Conference on Decision and Control, New Orleans, 2007, 1453–1458

[11] Krioukov D., Papadopoulos F., Kitsak M., Vahdat A., Boguñá M., Hyperbolic geometry of complex networks, Phys. Rev. E, 2010, 82(3), #036106

[12] Narayan O., Saniee I., Large-scale curvature of networks, Phys. Rev. E, 2011, 84, #066108

[13] Shang Y., Lack of Gromov-hyperbolicity in small-world networks, Cent. Eur. J. Math., 2012, 10(3), 1152–1158 http://dx.doi.org/10.2478/s11533-012-0032-8 | Zbl 1242.05257