Numerical analysis of nonlinear model of excited carrier decay
Natalija Tumanova ; Raimondas Čiegis ; Mečislavas Meilūnas
Open Mathematics, Tome 11 (2013), p. 1140-1152 / Harvested from The Polish Digital Mathematics Library

This paper presents a mathematical model for photo-excited carrier decay in a semiconductor. Due to the carrier trapping states and recombination centers in the bandgap, the carrier decay process is defined by the system of nonlinear differential equations. The system of nonlinear ordinary differential equations is approximated by linearized backward Euler scheme. Some a priori estimates of the discrete solution are obtained and the convergence of the linearized backward Euler method is proved. The identifiability analysis of the parameters of deep centers is performed and the fitting of the model to experimental data is done by using the genetic optimization algorithm. Results of numerical experiments are presented.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:269022
@article{bwmeta1.element.doi-10_2478_s11533-013-0226-8,
     author = {Natalija Tumanova and Raimondas \v Ciegis and Me\v cislavas Meil\=unas},
     title = {Numerical analysis of nonlinear model of excited carrier decay},
     journal = {Open Mathematics},
     volume = {11},
     year = {2013},
     pages = {1140-1152},
     zbl = {1278.82067},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0226-8}
}
Natalija Tumanova; Raimondas Čiegis; Mečislavas Meilūnas. Numerical analysis of nonlinear model of excited carrier decay. Open Mathematics, Tome 11 (2013) pp. 1140-1152. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0226-8/

[1] Ascher U.M., Petzold L.R., Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations, Society for Industrial and Applied Mathematics, Philadelphia, 1998 http://dx.doi.org/10.1137/1.9781611971392[Crossref] | Zbl 0908.65055

[2] Carnevale N.T., Hines M.L., The NEURON Book, Cambridge University Press, Cambridge, 2006 http://dx.doi.org/10.1017/CBO9780511541612[Crossref]

[3] Chegis R.Yu., A study of difference schemes for a class of models of excitability, Comput. Math. Math. Phys., 1992, 32(6), 757–767 | Zbl 0772.65055

[4] Chis O.-T., Banga J.R., Balsa-Canto E., Structural identifiability of systems biology models: a critical comparison of methods, PLoS ONE, 6(11), #e27755

[5] Čiegis R., Tumanova N., Finite-difference schemes for parabolic problems on graphs, Lith. Math. J., 2010, 50(2), 164–178 http://dx.doi.org/10.1007/s10986-010-9077-1[Crossref] | Zbl 1218.65081

[6] Enns R.H., It’s a Nonlinear World, Springer Undergrad. Texts Math. Technol., Springer, New York, 2011 http://dx.doi.org/10.1007/978-0-387-75340-9[Crossref]

[7] Gerisch A., Chaplain M.A.J., Robust numerical methods for taxis-diffusion-reaction systems: applications to biomedical problems, Math. Comput. Modelling, 2006, 43(1-2), 49–75 http://dx.doi.org/10.1016/j.mcm.2004.05.016[Crossref] | Zbl 1086.92025

[8] Goudon T., Miljanovic V., Schmeiser C., On the Shockley-Read-Hall Model: generation-recombination in semiconductors, SIAM J. Appl. Math., 2007, 67(4), 1183–1201 http://dx.doi.org/10.1137/060650751[WoS][Crossref] | Zbl 1146.82007

[9] Hairer E., Nørsett S.P., Wanner G., Solving Ordinary Differential Equations I, Springer Ser. Comput. Math., 8, Springer, Berlin, 1993 | Zbl 0789.65048

[10] Hairer E., Wanner G., Solving Ordinary Differential Equations II, Springer Ser. Comput. Math., 14, Springer, Berlin, 1996 http://dx.doi.org/10.1007/978-3-642-05221-7[Crossref] | Zbl 0859.65067

[11] Hall R.N., Electron-hole recombination in Germanium, Physical Review, 1952, 87(2), 387–387 http://dx.doi.org/10.1103/PhysRev.87.387[Crossref]

[12] Hanslien M., Karlsen K.H., Tveito A., A maximum principle for an explicit finite difference scheme approximating the Hodgkin-Huxley model, BIT, 2005, 45(4), 725–741 http://dx.doi.org/10.1007/s10543-005-0023-2[Crossref] | Zbl 1099.65069

[13] Hauser J.R., Numerical Methods for Nonlinear Engineering Models, Springer, Berlin, 2009 http://dx.doi.org/10.1007/978-1-4020-9920-5[Crossref] | Zbl 1173.65001

[14] Hodgkin A., Huxley A., A quantitative description of membrane current and its application to conduction and excitation in nerve, The Journal of Physiology, 1952, 117(4), 500–544

[15] Horváth Z., Positivity of Runge-Kutta and diagonally split Runge-Kutta methods, Appl. Numer. Math., 1998, 28(2–4), 309–326 http://dx.doi.org/10.1016/S0168-9274(98)00050-6[Crossref] | Zbl 0926.65073

[16] Hundsdorfer W., Verwer J.G., Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations, Springer Ser. Comput. Math., 33, Springer, Berlin-Heidelberg-New York-Tokyo, 2003 | Zbl 1030.65100

[17] Ichimura M., Temperature dependence of a slow component of excess carrier decay curves, Solid-State Electronics, 2006, 50(11–12), 1761–1766 http://dx.doi.org/10.1016/j.sse.2006.10.001[Crossref]

[18] Macdonald D., Cuevas A., Validity of simplified Shockley-Read-Hall statistics for modeling carrier lifetimes in crystalline silicon, Phys. Rev. B, 2003, 67(7), #075203 http://dx.doi.org/10.1103/PhysRevB.67.075203[Crossref]

[19] Mascagni M., The backward Euler method for numerical solution of the Hodgkin-Huxley equations of nerve conduction, SIAM J. Numer. Anal., 1990, 27(4), 941–962 http://dx.doi.org/10.1137/0727054[Crossref] | Zbl 0707.92006

[20] Miao H., Xia X., Perelson A.S., Wu H., On identifiability of nonlinear ODE models and applications in viral dynamics, SIAM Rev., 2011, 53(1), 3–39 http://dx.doi.org/10.1137/090757009[Crossref][WoS] | Zbl 1215.34015

[21] Mitra S., Mitra A., Kundu D., Genetic algorithm and M-estimator based robust sequential estimation of parameters of nonlinear sinusoidal signals, Commun. Nonlinear Sci. Numer. Simul., 2011, 16(7), 2796–2809 http://dx.doi.org/10.1016/j.cnsns.2010.10.005[Crossref][WoS] | Zbl 1221.94020

[22] Pincevičius A., Meilūnas M., Tumanova N., Numerical simulation of the conductivity relaxation in the high resistivity semiconductor, Math. Model. Anal., 2007, 12(3), 379–388 http://dx.doi.org/10.3846/1392-6292.2007.12.379-388[Crossref][WoS] | Zbl 1132.78312

[23] Schmerler S., Hahn T., Hahn S., Niklas J., Gründig-Wendrock B., Explanation of positive and negative PICTS peaks in SI-GaAs, Journal of Materials Science: Materials in Electronics, 2008, 19(S1), 328–332 http://dx.doi.org/10.1007/s10854-007-9564-2[Crossref]

[24] Shockley W., Read W.T., Statistics of the recombinations of holes and electrons, Phys. Rev., 1952, 87(5), 835–842 http://dx.doi.org/10.1103/PhysRev.87.835[Crossref] | Zbl 0046.45106

[25] Sivanandam S.N., Deepa S.N., Introduction to Genetic Algorithms, Springer, Berlin, 2010

[26] Starikovičius V., Čiegis R., Iliev O., A parallel solver for the design of oil filters, Math. Model. Anal., 2011, 16(2), 326–341 http://dx.doi.org/10.3846/13926292.2011.582591[Crossref][WoS] | Zbl 1301.76076

[27] Sundnes J., Lines G.T., Cai X., Nielsen B.F., Mardal K.-A., Tveito A., Computing the Electrical Activity in the Heart, Monogr. Comput. Sci. Eng., 1, Springer, Berlin, 2006 | Zbl 1182.92020

[28] Tikidji-Hamburyan R.A., Genetic algorithm modification to speed up parameter fitting for a multicompartment neuron model, BMC Neuroscience, 2008, 9(S1), #P90 [Crossref]

[29] Tumanova N., Čiegis R., Predictor-corrector domain decomposition algorithm for parabolic problems on graphs, Math. Model. Anal., 2012, 17(1), 113–127 http://dx.doi.org/10.3846/13926292.2012.645891[WoS][Crossref] | Zbl 1246.65156

[30] Van Geit W., De Schutter E., Achard P., Automated neuron model optimization techniques: a review, Biol. Cybernet., 2008, 99(4–5), 241–251 http://dx.doi.org/10.1007/s00422-008-0257-6[Crossref] | Zbl 1154.92013

[31] Yao L., Sethares W.A., Nonlinear parameter estimation via the genetic algorithm, IEEE Trans. Signal Process., 1994, 42(4), 927–935 http://dx.doi.org/10.1109/78.285655[Crossref]