Exponential generating function of hyperharmonic numbers indexed by arithmetic progressions
István Mező
Open Mathematics, Tome 11 (2013), p. 931-939 / Harvested from The Polish Digital Mathematics Library

There is a circle of problems concerning the exponential generating function of harmonic numbers. The main results come from Cvijovic, Dattoli, Gosper and Srivastava. In this paper, we extend some of them. Namely, we give the exponential generating function of hyperharmonic numbers indexed by arithmetic progressions; in the sum several combinatorial numbers (like Stirling and Bell numbers) and the hypergeometric function appear.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:269660
@article{bwmeta1.element.doi-10_2478_s11533-013-0214-z,
     author = {Istv\'an Mez\H o},
     title = {Exponential generating function of hyperharmonic numbers indexed by arithmetic progressions},
     journal = {Open Mathematics},
     volume = {11},
     year = {2013},
     pages = {931-939},
     zbl = {1268.05011},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0214-z}
}
István Mező. Exponential generating function of hyperharmonic numbers indexed by arithmetic progressions. Open Mathematics, Tome 11 (2013) pp. 931-939. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0214-z/

[1] Aigner M., Combinatorial Theory, Classics Math., Springer, Berlin, 1997 http://dx.doi.org/10.1007/978-3-642-59101-3

[2] Andrews G.E., Askey R., Roy R., Special Functions, Encyclopedia Math. Appl., 71, Cambridge University Press, Cambridge, 2001

[3] Benjamin A.T., Gaebler D., Gaebler R., A combinatorial approach to hyperharmonic numbers, Integers, 2003, 3, #A15

[4] Borwein D., Borwein J.M., Girgensohn R., Explicit evaluation of Euler sums, Proc. Edinburgh Math. Soc., 1995, 38(2), 277–294 http://dx.doi.org/10.1017/S0013091500019088 | Zbl 0819.40003

[5] Boyadzhiev K.N., Exponential polynomials, Exponential polynomials, Stirling numbers, and evaluation of some gamma integrals, Abstr. Appl. Anal., 2009, #168672 | Zbl 1237.11011

[6] Broder A.Z., The r-Stirling numbers, Discrete Math., 1984, 49(3), 241–259 http://dx.doi.org/10.1016/0012-365X(84)90161-4

[7] Charalambides Ch.A., Combinatorial Methods in Discrete Distributions, Wiley Ser. Probab. Stat., Wiley-Interscience, Hoboken, 2005 http://dx.doi.org/10.1002/0471733180 | Zbl 1087.60001

[8] Cheon G.-S., Jung J.-H., r-Whitney numbers of Dowling lattices, Discrete Math., 2012, 312(15), 2337–2348 http://dx.doi.org/10.1016/j.disc.2012.04.001 | Zbl 1246.05009

[9] Chowla S., Nathanson M.B., Mellin’s formula and some combinatorial identities, Monatsh. Math., 1976, 81(4), 261–265 http://dx.doi.org/10.1007/BF01387753 | Zbl 0343.05011

[10] Comtet L., Advanced Combinatorics, Reidel, Dordrecht, 2010

[11] Conway J.H., Guy R.K., The Book of Numbers, Copernicus, New York, 1996 http://dx.doi.org/10.1007/978-1-4612-4072-3

[12] Corcino R.B., The (r; β)-Stirling numbers, Mindanao Forum, 1999, 14(2), 91–100

[13] Corcino R.B., Corcino C.B., Aldema R., Asymptotic normality of the (r; β)-Stirling numbers, Ars. Combin., 2006, 81, 81–96 | Zbl 1189.11013

[14] Corcino R.B., Montero M.B., Corcino C.B., On generalized Bell numbers for complex argument, Util. Math., 2012, 88, 267–279 | Zbl 1320.11017

[15] Crandall R.E., Buhler J.P., On the evaluation of Euler sums, Experiment. Math., 1994, 3(4), 275–285 http://dx.doi.org/10.1080/10586458.1994.10504297 | Zbl 0833.11045

[16] Cvijovic D., The Dattoli-Srivastava conjectures concerning generating functions involving the harmonic numbers, Appl. Math. Comput., 2010, 215(11), 4040–4043 http://dx.doi.org/10.1016/j.amc.2009.12.011 | Zbl 1185.33019

[17] Dattoli G., Srivastava H.M., A note on harmonic numbers, umbral calculus and generating functions, Appl. Math. Lett., 2008, 21(7), 686–693 http://dx.doi.org/10.1016/j.aml.2007.07.021 | Zbl 1152.05306

[18] Dobinski G., Summirung der Reihe Σn m/n! für m = 1,2, 3,…, Archiv der Mathematik und Physik, 1877, 61, 333–336 | Zbl 09.0178.04

[19] Erdélyi A., Magnus W., Oberhettinger F., Tricomi F.G., Higher Transcendental Functions, 1, Robert E. Krieger, Melbourne, 1981 | Zbl 0064.06302

[20] Flajolet P., Salvy B., Euler sums and contour integral representations, Experiment. Math., 1998, 7(1), 15–35 http://dx.doi.org/10.1080/10586458.1998.10504356 | Zbl 0920.11061

[21] Gradshteyn I.S., Ryzhik I.M., Table of Integrals, Series, and Products, 7th ed., Academic Press, Amsterdam, 2007 | Zbl 1208.65001

[22] Graham R.L., Knuth D.E., Patashnik O., Concrete Mathematics, Addison-Wesley, Reading, 1994 | Zbl 0836.00001

[23] Hansen E.R., A Table of Series and Products, Prentice-Hall, Englewood Cliffs, 1975 | Zbl 0438.00001

[24] Mező I., Analytic extension of hyperharmonic numbers, Online J. Anal. Comb., 2009, 4, #1 | Zbl 1190.33021

[25] Mező I., A new formula for the Bernoulli polynomials, Results Math., 2010, 58(3–4), 329–335 http://dx.doi.org/10.1007/s00025-010-0039-z | Zbl 1237.11010

[26] Mező I., Dil A., Euler-Seidel method for certain combinatorial numbers and a new characterization of Fibonacci sequence, Cent. Eur. J. Math., 2009, 7(2), 310–321 http://dx.doi.org/10.2478/s11533-009-0008-5 | Zbl 1229.11043

[27] Mező I., Dil A., Hyperharmonic series involving Hurwitz zeta function, J. Number Theory, 2010, 130(2), 360–369 http://dx.doi.org/10.1016/j.jnt.2009.08.005 | Zbl 1225.11032

[28] Pitman J., Some probabilistic aspects of set partitions, Amer. Math. Monthly, 1997, 104(3), 201–209 http://dx.doi.org/10.2307/2974785 | Zbl 0876.05005

[29] Rucinski A., Voigt B., A local limit theorem for generalized Stirling numbers, Rev. Roumaine Math. Pures Appl., 1990, 35(2), 161–172 | Zbl 0727.60024

[30] Sofo A., Srivastava H.M., Identities for the harmonic numbers and binomial coefficients, Ramanujan J., 2011, 25(1), 93–113 http://dx.doi.org/10.1007/s11139-010-9228-3 | Zbl 1234.11022