Energy estimates and numerical verification of the stabilized Domain Decomposition Finite Element/Finite Difference approach for time-dependent Maxwell’s system
Larisa Beilina
Open Mathematics, Tome 11 (2013), p. 702-733 / Harvested from The Polish Digital Mathematics Library

We rigorously derive energy estimates for the second order vector wave equation with gauge condition for the electric field with non-constant electric permittivity function. This equation is used in the stabilized Domain Decomposition Finite Element/Finite Difference approach for time-dependent Maxwell’s system. Our numerical experiments illustrate efficiency of the modified hybrid scheme in two and three space dimensions when the method is applied for generation of backscattering data in the reconstruction of the electric permittivity function.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:268949
@article{bwmeta1.element.doi-10_2478_s11533-013-0202-3,
     author = {Larisa Beilina},
     title = {Energy estimates and numerical verification of the stabilized Domain Decomposition Finite Element/Finite Difference approach for time-dependent Maxwell's system},
     journal = {Open Mathematics},
     volume = {11},
     year = {2013},
     pages = {702-733},
     zbl = {1267.78044},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0202-3}
}
Larisa Beilina. Energy estimates and numerical verification of the stabilized Domain Decomposition Finite Element/Finite Difference approach for time-dependent Maxwell’s system. Open Mathematics, Tome 11 (2013) pp. 702-733. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0202-3/

[1] Assous F., Degond P., Heintze E., Raviart P.-A., Serge J., On a finite-element method for solving the three-dimensional Maxwell equations, J. Comput. Phys., 1993, 109(2), 222–237 http://dx.doi.org/10.1006/jcph.1993.1214 | Zbl 0795.65087

[2] Beilina L., Grote M.J., Adaptive hybrid finite element/difference method for Maxwell’s equations, TWMS J. Pure Appl. Math., 2010, 1(2), 176–197 | Zbl 1236.78028

[3] Beilina L., Johnson C., A posteriori error estimation in computational inverse scattering, Math. Models Methods Appl. Sci., 2005, 15(1), 23–37 http://dx.doi.org/10.1142/S0218202505003885 | Zbl 1160.76363

[4] Beilina L., Johnsson C., Hybrid FEM/FDM method for an inverse scattering problem, In: Numerical Mathematics and Advanced Applications, Ischia, July, 2001, Springer, Milan, 2003, 545–556 | Zbl 1043.65111

[5] Beilina L., Klibanov M.V., Reconstruction of dielectrics from experimental data via a hybrid globally convergent/adaptive inverse algorithm, Inverse Problems, 2010, 26(12), #125009 http://dx.doi.org/10.1088/0266-5611/26/12/125009 | Zbl 1209.78010

[6] Beilina L., Samuelsson K., Åhlander K., Efficiency of a hybrid method for the wave equation, In: Finite Element Methods, Jyväskylä, 2000, GAKUTO Internat. Ser. Math. Sci. Appl., 15, Gakkotosho, Tokyo, 2001, 9–21 | Zbl 0994.65088

[7] Brenner S.C., Scott L.R., The Mathematical Theory of Finite Element Methods, Texts Appl. Math., 15, Springer, New York, 1994 | Zbl 0804.65101

[8] Budak B.M., Samarskii A.A., Tikhonov A.N., A Collection of Problems in Mathematical Physics, Dover Phoenix Ed., Dover, Mineola, 1988

[9] Cangellaris A.C., Wright D.B., Analysis of the numerical error caused by the stair-stepped approximation of a conducting boundary in FDTD simulations of electromagnetic phenomena, IEEE Trans. Antennas and Propagation, 1991, 39(10), 1518–1525 http://dx.doi.org/10.1109/8.97384

[10] Edelvik F., Ledfelt G., Explicit hybrid time domain solver for the Maxwell equations in 3D, J. Sci. Comput., 2000, 15(1), 61–78 http://dx.doi.org/10.1023/A:1007625629485 | Zbl 0983.78025

[11] Elmkies A., Joly P., Éléments finis d’arête et condensation de masse pour les équations de Maxwell: le cas 2D, C. R. Acad. Sci. Paris Sér. I Math., 1997, 324(11), 1287–1293 http://dx.doi.org/10.1016/S0764-4442(99)80415-7

[12] Engquist B., Majda A., Absorbing boundary conditions for the numerical simulation of waves, Math. Comp., 1977, 31(139), 629–651 http://dx.doi.org/10.1090/S0025-5718-1977-0436612-4 | Zbl 0367.65051

[13] Hughes T.J.R., The Finite Element Method, Prentice Hall, Englewood Cliffs, 1987 | Zbl 0634.73056

[14] Jiang B., The Least-Squares Finite Element Method, Scientific Computation, Springer, Berlin-Heidelberg, 1998 http://dx.doi.org/10.1007/978-3-662-03740-9

[15] Jiang B.-N., Wu J. Povinelli L.A., The origin of spurious solutions in computational electromagnetics, J. Comput. Phys., 1996, 125(1), 104–123 http://dx.doi.org/10.1006/jcph.1996.0082 | Zbl 0848.65086

[16] Jin J., The Finite Element Method in Electromagnetics, John Wiley&Sons, New York, 1993 | Zbl 0823.65124

[17] Joly P., Variational Methods for Time-Dependent Wave Propagation Problems, In: Topics in Computational Wave Propagation, Lect. Notes Comput. Sci. Eng., 31, Springer, Berlin, 2003, 201–264 http://dx.doi.org/10.1007/978-3-642-55483-4_6

[18] Klibanov M.V., Fiddy M.A., Beilina L., Pantong N., Schenk J., Picosecond scale experimental verification of a globally convergent algorithm for a coefficient inverse problem, Inverse Problems, 2010, 26(4), #045003 http://dx.doi.org/10.1088/0266-5611/26/4/045003 | Zbl 1190.78006

[19] Ladyzhenskaya O.A., The Boundary Value Problems of Mathematical Physics, Appl. Math. Sci., 49, Springer, New York, 1985 http://dx.doi.org/10.1007/978-1-4757-4317-3

[20] Monk P.B., Finite Element Methods for Maxwell’s Equations, Oxford University Press, New York, 2003 http://dx.doi.org/10.1093/acprof:oso/9780198508885.001.0001 | Zbl 1024.78009

[21] Monk P.B., Parrott A.K., A dispersion analysis of finite element methods for Maxwell’s equations, SIAM J. Sci. Comput., 1994, 15(4), 916–937 http://dx.doi.org/10.1137/0915055 | Zbl 0804.65122

[22] Munz C.-D., Omnes P., Schneider R., Sonnendrücker E., Voß U., Divergence correction techniques for Maxwell solvers based on a hyperbolic model, J. Comput. Phys., 2000, 161(2), 484–511 http://dx.doi.org/10.1006/jcph.2000.6507 | Zbl 0970.78010

[23] Paulsen K.D., Lynch D.R., Elimination of vector parasites in finite element Maxwell solutions, IEEE Trans. Microwave Theory Tech., 1991, 39(3), 395–404 http://dx.doi.org/10.1109/22.75280

[24] Perugia I., Schötzau D., The hp-local discontinuous Galerkin method for low-frequency time-harmonic Maxwell equations, Math. Comp., 2002, 72(243), 1179–1214 http://dx.doi.org/10.1090/S0025-5718-02-01471-0 | Zbl 1084.78007

[25] Rylander T., Bondeson A., Stable FEM-FDTD hybrid method for Maxwell’s equations, Comput. Phys. Comm., 2000, 125(1–3), 75–82 http://dx.doi.org/10.1016/S0010-4655(99)00463-4 | Zbl 1003.78009

[26] Rylander T., Bondeson A., Stability of explicit-implicit hybrid time-stepping schemes for Maxwell’s equations, J. Comput. Phys., 2002, 179(2), 426–438 http://dx.doi.org/10.1006/jcph.2002.7063 | Zbl 1003.78010

[27] Yee K.S., Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media, IEEE Trans. Antennas and Propagation, 1966, 14(3), 302–307 7 | Zbl 1155.78304