Collineation group as a subgroup of the symmetric group
Fedor Bogomolov ; Marat Rovinsky
Open Mathematics, Tome 11 (2013), p. 17-26 / Harvested from The Polish Digital Mathematics Library

Let ψ be the projectivization (i.e., the set of one-dimensional vector subspaces) of a vector space of dimension ≥ 3 over a field. Let H be a closed (in the pointwise convergence topology) subgroup of the permutation group 𝔖ψ of the set ψ. Suppose that H contains the projective group and an arbitrary self-bijection of ψ transforming a triple of collinear points to a non-collinear triple. It is well known from [Kantor W.M., McDonough T.P., On the maximality of PSL(d+1,q), d ≥ 2, J. London Math. Soc., 1974, 8(3), 426] that if ψ is finite then H contains the alternating subgroup 𝔄ψ of 𝔖ψ. We show in Theorem 3.1 that H = 𝔖ψ, if ψ is infinite.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:269715
@article{bwmeta1.element.doi-10_2478_s11533-012-0131-6,
     author = {Fedor Bogomolov and Marat Rovinsky},
     title = {Collineation group as a subgroup of the symmetric group},
     journal = {Open Mathematics},
     volume = {11},
     year = {2013},
     pages = {17-26},
     zbl = {1277.20003},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0131-6}
}
Fedor Bogomolov; Marat Rovinsky. Collineation group as a subgroup of the symmetric group. Open Mathematics, Tome 11 (2013) pp. 17-26. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0131-6/

[1] Ball R.W., Maximal subgroups of symmetric groups, Trans. Amer. Math. Soc., 1966, 121(2), 393–407 http://dx.doi.org/10.1090/S0002-9947-1966-0202813-2 | Zbl 0136.27805

[2] Becker H., Kechris A.S., The Descriptive Set Theory of Polish Group Actions, London Math. Soc. Lecture Note Ser., 232, Cambridge University Press, Cambridge, 1996 http://dx.doi.org/10.1017/CBO9780511735264 | Zbl 0949.54052

[3] Bergman G., Shelah S., Closed subgroups of the infinite symmetric group, Algebra Universalis, 2006, 55(2–3), 137–173 http://dx.doi.org/10.1007/s00012-006-1959-z | Zbl 1111.20004

[4] Cameron P.J., Oligomorphic Permutation Groups, London Math. Soc. Lecture Note Ser., 152, Cambridge University Press, Cambridge, 1990 http://dx.doi.org/10.1017/CBO9780511549809 | Zbl 0813.20002

[5] Dixon J.D., Mortimer B., Permutation Groups, Grad. Texts in Math., 163, Springer, New York, 1996 http://dx.doi.org/10.1007/978-1-4612-0731-3

[6] Hodges W., Model Theory, Encyclopedia Math. Appl., 42, Cambridge University Press, Cambridge, 2008

[7] Huisman J., Mangolte F., The group of automorphisms of a real rational surface is n-transitive, Bull. Lond. Math. Soc., 2009, 41(3), 563–568 http://dx.doi.org/10.1112/blms/bdp033 | Zbl 1170.14042

[8] Kantor W.M., Jordan groups, J. Algebra, 1969, 12(4), 471–493 http://dx.doi.org/10.1016/0021-8693(69)90024-6

[9] Kantor W.M., McDonough T.P., On the maximality of PSL(d+1, q), d ≥ 2, J. London Math. Soc., 1974, 8(3), 426 http://dx.doi.org/10.1112/jlms/s2-8.3.426 | Zbl 0299.20010

[10] Kollár J., Mangolte F., Cremona transformations and diffeomorphisms of surfaces, Adv. Math., 2009, 222(1), 44–61 http://dx.doi.org/10.1016/j.aim.2009.03.020 | Zbl 1188.14008

[11] Macpherson H.D., Neumann P.M., Subgroups of infinite symmetric groups, J. London Math. Soc., 1990, 42(1), 64–84 http://dx.doi.org/10.1112/jlms/s2-42.1.64 | Zbl 0668.20005

[12] Miller G.A., Limits of the degree of transitivity of substitution groups, Bull. Amer. Math. Soc., 1915, 22(2), 68–71 http://dx.doi.org/10.1090/S0002-9904-1915-02720-5 | Zbl 45.1237.04

[13] Richman F., Maximal subgroups of infinite symmetric groups, Canad. Math. Bull., 1967, 10(3), 375–381 http://dx.doi.org/10.4153/CMB-1967-035-0 | Zbl 0149.27101

[14] Wielandt H., Abschätzungen für den Grad einer Permutationsgruppe von vorgeschriebenem Transitivitätsgrad, Schriften des mathematischen Seminars und des Instituts für angewandte Mathematik der Universität Berlin, 1934, 2, 151–174 | Zbl 0011.01005