Perron-Frobenius and Krein-Rutman theorems for tangentially positive operators
Adam Kanigowski ; Wojciech Kryszewski
Open Mathematics, Tome 10 (2012), p. 2240-2263 / Harvested from The Polish Digital Mathematics Library

We study several aspects of a generalized Perron-Frobenius and Krein-Rutman theorems concerning spectral properties of a (possibly unbounded) linear operator on a cone in a Banach space. The operator is subject to the so-called tangency or weak range assumptions implying the resolvent invariance of the cone. The further assumptions rely on relations between the spectral and essential spectral bounds of the operator. In general we do not assume that the cone induces the Banach lattice structure into the underlying space.

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:269599
@article{bwmeta1.element.doi-10_2478_s11533-012-0118-3,
     author = {Adam Kanigowski and Wojciech Kryszewski},
     title = {Perron-Frobenius and Krein-Rutman theorems for tangentially positive operators},
     journal = {Open Mathematics},
     volume = {10},
     year = {2012},
     pages = {2240-2263},
     zbl = {1283.47009},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0118-3}
}
Adam Kanigowski; Wojciech Kryszewski. Perron-Frobenius and Krein-Rutman theorems for tangentially positive operators. Open Mathematics, Tome 10 (2012) pp. 2240-2263. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0118-3/

[1] Akhmerov R.R., Kamenskii M.I., Potapov A.S., Rodkina A.E., Sadovskii B.N., Measures of Noncompactness and Condensing Operators, Oper. Theory Adv. Appl., 55, Birkhäuser, Basel, 1992

[2] Aliprantis C.D., Burkinshaw O., Positive Operators, Springer, Dordrecht, 2006

[3] Appell J., De Pascale E., Vignoli A., Nonlinear Spectral Theory, Walter De Gruyter, Berlin, 2004 http://dx.doi.org/10.1515/9783110199260[Crossref] | Zbl 1056.47001

[4] Arendt W., Grabosch A., Greiner G., Groh U., Lotz H.P., Moustakas U., Nagel R., Neubrander F., Schlotterbeck U., One-Parameter Semigroups of Positive Operators, Lecture Notes in Math., 1184, Springer, Berlin, 1986

[5] Aubin J.-P., Ekeland I., Applied Nonlinear Analysis, Pure Appl. Math. (N.Y.), John Wiley & Sons, New York, 1984 | Zbl 0641.47066

[6] Barbu V., Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff, Leiden, 1976 http://dx.doi.org/10.1007/978-94-010-1537-0[Crossref]

[7] Brézis H., Browder F.E., A general principle on ordered sets in nonlinear functional analysis, Advances in Math., 1976, 21(3), 355–364 http://dx.doi.org/10.1016/S0001-8708(76)80004-7[Crossref] | Zbl 0339.47030

[8] Deimling K., Nonlinear Functional Analysis, Springer, Berlin, 1985 http://dx.doi.org/10.1007/978-3-662-00547-7[Crossref]

[9] Edmunds D.E., Potter A.J.B., Stuart C.A., Non-Compact Positive Operators, Proc. Roy. Soc. London Ser. A, 1972, 328(1572), 67–81 http://dx.doi.org/10.1098/rspa.1972.0069[Crossref] | Zbl 0232.47035

[10] Engel K.-J., Nagel R., One-Parameter Semigroups for Linear Evolution Equations, Grad. Texts in Math., 194, Springer, New York, 2000 | Zbl 0952.47036

[11] Greiner G., Voigt J., Wolff M., On the spectral bound of the generator of semigroups of positive operators, J. Operator Theory, 1981, 5(2), 245–256 | Zbl 0469.47032

[12] Kamenskii M., Obukhovskii V., Zecca P., Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces, de Gruyter Ser. Nonlinear Anal. Appl., 7, Walter de Gruyter, Berlin, 2001 | Zbl 0988.34001

[13] Kato T., Perturbation Theory for Linear Operators, Grundlehren Math. Wiss., 132, Springer, New York, 1966 | Zbl 0148.12601

[14] Kobayashi Y., Difference approximation of Cauchy problems for quasi-dissipative operators and generation of nonlinear semigroups, J. Math. Soc. Japan, 1975, 27(4), 640–665 http://dx.doi.org/10.2969/jmsj/02740640[Crossref] | Zbl 0313.34068

[15] Krasnosel’skij M.A., Lifshits Je.A., Sobolev A.V., Positive Linear Systems, Sigma Ser. Appl. Math., 5, Heldermann, Berlin, 1989

[16] Mallet-Paret J., Nussbaum R.D., Generalizing the Krein-Rutman theorem, measures of noncompactness and the fixed point index, J. Fixed Point Theory Appl., 2010, 7(1), 103–143 http://dx.doi.org/10.1007/s11784-010-0010-3[Crossref][WoS] | Zbl 1206.47044

[17] Martin R.H., Jr., Nonlinear Operators and Differential Equations in Banach Spaces, Pure Appl. Math. (N.Y.), John Wiley & Sons, New York-London-Sydney, 1976

[18] Nagel R., Uhlig H., An abstract Kato inequality for generators of positive operators semigroups on Banach lattices, J. Operator Theory, 1981, 6(1), 113–123 | Zbl 0486.47025

[19] van Neerven J., The asymptotic behaviour of semigroups of linear operators, Oper. Theory Adv. Appl., 88, Birkhäuser, Basel, 1996 http://dx.doi.org/10.1007/978-3-0348-9206-3[Crossref]

[20] Nussbaum R.D., The radius of the essential spectrum, Duke Math. J., 1970, 37, 473–478 http://dx.doi.org/10.1215/S0012-7094-70-03759-2[Crossref] | Zbl 0216.41602

[21] Nussbaum R.D., Positive operators and elliptic eigenvalue problems, Math. Z., 1984, 186(2), 247–264 http://dx.doi.org/10.1007/BF01161807[Crossref] | Zbl 0549.47026

[22] Nussbaum R.D., Eigenvectors of nonlinear positive operators and the linear Krein-Rutman theorem, In: Fixed Point Theory, Sherbrooke, June 2–21, 1980, Lecture Notes in Math., 886, Springer, Berlin-New York, 1981, 309–330

[23] Pazy A., Semigroups of Linear Operators and Applications to Partial Differential Equations, Appl. Math. Sci., 44, Springer, New York, 1983 http://dx.doi.org/10.1007/978-1-4612-5561-1[Crossref] | Zbl 0516.47023

[24] Vrabie I.I., Compactness Methods for Nonlinear Evolutions, Pitman Monogr. Surveys Pure Appl. Math., 32, Longman Scientific & Technical, Harlow; John Wiley & Sons, New York, 1987 | Zbl 0721.47050