Existence and uniqueness of solution for a class of nonlinear sequential differential equations of fractional order
Małgorzata Klimek ; Marek Błasik
Open Mathematics, Tome 10 (2012), p. 1981-1994 / Harvested from The Polish Digital Mathematics Library

Two-term semi-linear and two-term nonlinear fractional differential equations (FDEs) with sequential Caputo derivatives are considered. A unique continuous solution is derived using the equivalent norms/metrics method and the Banach theorem on a fixed point. Both, the unique general solution connected to the stationary function of the highest order derivative and the unique particular solution generated by the initial value problem, are explicitly constructed and proven to exist in an arbitrary interval, provided the nonlinear terms fulfil the corresponding Lipschitz condition. The existence-uniqueness results are given for an arbitrary order of the FDE and an arbitrary partition of orders between the components of sequential derivatives.

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:269411
@article{bwmeta1.element.doi-10_2478_s11533-012-0112-9,
     author = {Ma\l gorzata Klimek and Marek B\l asik},
     title = {Existence and uniqueness of solution for a class of nonlinear sequential differential equations of fractional order},
     journal = {Open Mathematics},
     volume = {10},
     year = {2012},
     pages = {1981-1994},
     zbl = {1260.26009},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0112-9}
}
Małgorzata Klimek; Marek Błasik. Existence and uniqueness of solution for a class of nonlinear sequential differential equations of fractional order. Open Mathematics, Tome 10 (2012) pp. 1981-1994. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0112-9/

[1] Baleanu D., Diethelm K., Scalas E., Trujillo J.J., Fractional Calculus, Ser. Complex. Nonlinearity Chaos, 3, World Scientific, Singapore, 2012 | Zbl 1248.26011

[2] Bǎleanu D., Mustafa O.G., On the global existence of solutions to a class of fractional differential equations, Comput. Math. Appl., 2010, 59(5), 1835–1841 http://dx.doi.org/10.1016/j.camwa.2009.08.028[Crossref]

[3] Bielecki A., Une remarque sur la méthode de Banach-Cacciopoli-Tikhonov dans la théorie des équations différentielles ordinaires, Bull. Acad. Polon. Sci. Cl. III, 1956, 4, 261–264 | Zbl 0070.08103

[4] Błasik M., Klimek M., On application of contraction principle to solve two-term fractional differential equations, Acta Mechanica et Automatica, 2011, 5(2), 5–10

[5] Deng J., Ma L., Existence and uniqueness of solutions of initial value problems for nonlinear fractional differential equations, Appl. Math. Lett., 2010, 23(6), 676–680 http://dx.doi.org/10.1016/j.aml.2010.02.007[Crossref]

[6] Diethelm K., The Analysis of Fractional Differential Equations, Lecture Notes in Math., 2004, Springer, Berlin, 2010

[7] El-Raheem Z.F.A., Modification of the application of a contraction mapping method on a class of fractional differential equation, Appl. Math. Comput., 2003, 137(2–3), 371–374 http://dx.doi.org/10.1016/S0096-3003(02)00136-4[Crossref] | Zbl 1034.34070

[8] Kilbas A.A., Srivastawa H.M., Trujillo J.J., Theory and Applications of Fractional Differential Equations, North-Holland Math. Stud., 204, Elsevier, Amsterdam, 2006 http://dx.doi.org/10.1016/S0304-0208(06)80001-0[Crossref]

[9] Kilbas A.A., Trujillo J.J., Differential equations of fractional order: methods, results and problems. I, Appl. Anal., 2001, 78(1–2), 153–192 http://dx.doi.org/10.1080/00036810108840931[Crossref] | Zbl 1031.34002

[10] Kilbas A.A., Trujillo J.J., Differential equations of fractional order: methods, results and problems. II, Appl. Anal., 2002, 81(2), 435–493 http://dx.doi.org/10.1080/0003681021000022032[Crossref]

[11] Klimek M., On Solutions of Linear Fractional Differential Equations of a Variational Type, Czestochowa University of Technology, Czestochowa, 2009

[12] Klimek M., On contraction principle applied to nonlinear fractional differential equations with derivatives of order α ∈ (0,1), Banach Center Publ., 2011, 95, 325–338 http://dx.doi.org/10.4064/bc95-0-19 | Zbl 1273.34011

[13] Klimek M., Sequential fractional differential equations with Hadamard derivative, Commun. Nonlinear Sci. Numer. Simul., 2011, 16(12), 4689–4697 http://dx.doi.org/10.1016/j.cnsns.2011.01.018[Crossref] | Zbl 1242.34009

[14] Klimek M., Błasik M., Existence-uniqueness result for nonlinear two-term sequential FDE, In: 7th European Nonlinear Dynamics Conference (ENOC 2011), Rome, July 24–29, 2011, available at http://w3.uniroma1.it/dsg/enoc2011/proceedings/pdf/Klimek_Blasik.pdf

[15] Kosmatov N., Integral equations and initial value problems for nonlinear differential equations of fractional order, Nonlinear Anal., 2009, 70(7), 2521–2529 http://dx.doi.org/10.1016/j.na.2008.03.037[Crossref]

[16] Lakshmikantham V., Leela S., Vasundhara Devi J., Theory of Fractional Dynamic Systems, Cambridge Scientific Publishers, Cambridge, 2009 | Zbl 1188.37002

[17] Miller K.S., Ross B., An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley & Sons, New York, 1993 | Zbl 0789.26002

[18] Podlubny I., Fractional Differential Equations, Math. Sci. Engrg., 198, Academic Press, San Diego, 1999

[19] ur Rehman M., Khan R.A., Existence and uniqueness of solutions for multi-point boundary value problems for fractional differential equations, Appl. Math. Lett., 2010, 23(9), 1038–1044 http://dx.doi.org/10.1016/j.aml.2010.04.033[Crossref]

[20] Samko S.G., Kilbas A.A., Marichev O.I., Fractional Integrals and Derivatives, Gordon and Breach, Amsterdam, 1993