Equivariant degree of convex-valued maps applied to set-valued BVP
Zdzisław Dzedzej
Open Mathematics, Tome 10 (2012), p. 2173-2186 / Harvested from The Polish Digital Mathematics Library

An equivariant degree is defined for equivariant completely continuous multivalued vector fields with compact convex values. Then it is applied to obtain a result on existence of solutions to a second order BVP for differential inclusions carrying some symmetries.

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:269357
@article{bwmeta1.element.doi-10_2478_s11533-012-0099-2,
     author = {Zdzis\l aw Dzedzej},
     title = {Equivariant degree of convex-valued maps applied to set-valued BVP},
     journal = {Open Mathematics},
     volume = {10},
     year = {2012},
     pages = {2173-2186},
     zbl = {1284.47036},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0099-2}
}
Zdzisław Dzedzej. Equivariant degree of convex-valued maps applied to set-valued BVP. Open Mathematics, Tome 10 (2012) pp. 2173-2186. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0099-2/

[1] Antonyan S.A., Balanov Z.I., Gel’man B.D., Bourgin-Yang-type theorem for a-compact perturbations of closed operators. Part I. The case of index theories with dimension property, Abstr. Appl. Anal., 2006, #78928

[2] Balanov Z., Krawcewicz W., Rybicki S., Steinlein H., A short treatise on the equivariant degree theory and its applications, J. Fixed Point Theory Appl., 2010, 8(1), 1–74 http://dx.doi.org/10.1007/s11784-010-0033-9[Crossref][WoS] | Zbl 1206.47057

[3] Balanov Z., Krawcewicz W., Steinlein H., Applied Equivariant Degree, AIMS Ser. Differ. Equ. Dyn. Syst., 1, American Institute of Mathematical Sciences, Springfield, 2006 | Zbl 1123.47043

[4] Borisovich Yu.G., Gel’man B.D., Myshkis A.D., Obukhovskii V.V., Introduction to the Theory of Multivalued Mappings and Differential Inclusions, URSS, Moscow, 2005 (in Russian)

[5] tom Dieck T., Transformation Groups, de Gruyter Stud. Math., 8, Walter de Gruyter, Berlin, 1987 http://dx.doi.org/10.1515/9783110858372[Crossref]

[6] Dzedzej Z., Kryszewski W., Selections and approximations of convex-valued equivariant mappings, Topol. Methods Nonlinear Anal. (in press) | Zbl 1296.54027

[7] Erbe L.H., Krawcewicz W., Nonlinear boundary value problems for differential inclusions y″ ∈ F(t, y, y′), Ann. Polon. Math., 1991, 54(3), 195–226 | Zbl 0731.34078

[8] Górniewicz L., Topological Fixed Point Theory of Multivalued Mappings, Math. Appl., 495, Kluwer, Dordrecht-Boston-London, 1999 | Zbl 0937.55001

[9] Granas A., Guenther R., Lee J., Nonlinear Boundary Value Problems for Ordinary Differential Equations, Dissertationes Math. (Rozprawy Mat.), 244, Polish Academy of Sciences, Warsaw, 1985 | Zbl 0615.34010

[10] Hofmann K.H., Morris S.A., The Structure of Compact Groups, de Gruyter Stud. Math., 25, Walter de Gruyter, Berlin, 2006

[11] Krawcewicz W., Wu J., Theory of Degrees with Applications to Bifurcations and Differential Equations, Canad. Math. Soc. Ser. Monogr. Adv. Texts, John Wiley & Sons, New York, 1997 | Zbl 0882.58001

[12] Michael E., Continuous selections I, Annals of Math., 1956, 63(2), 361–382 http://dx.doi.org/10.2307/1969615[Crossref] | Zbl 0071.15902

[13] Murayama M., On G-ANR’s and their G-homotopy types, Osaka J. Math., 1983, 20(3), 479–512 | Zbl 0531.57034

[14] Pruszko T., Topological degree methods in multivalued boundary value problems, Nonlinear Anal., 1981, 5(9), 959–973 http://dx.doi.org/10.1016/0362-546X(81)90056-0[Crossref]

[15] Pruszko T., Some Applications of the Topological Degree Theory to Multivalued Boundary Value Problems, Dissertationes Math. (Rozprawy Mat.), 229, Polish Academy of Sciences, Warsaw, 1984

[16] Rudin W., Functional Analysis, 2nd ed., Internat. Ser. Pure Appl. Math., McGraw-Hill, New York, 1991