The degenerate C. Neumann system I: symmetry reduction and convexity
Holger Dullin ; Heinz Hanßmann
Open Mathematics, Tome 10 (2012), p. 1627-1654 / Harvested from The Polish Digital Mathematics Library

The C. Neumann system describes a particle on the sphere S n under the influence of a potential that is a quadratic form. We study the case that the quadratic form has ℓ +1 distinct eigenvalues with multiplicity. Each group of m σ equal eigenvalues gives rise to an O(m σ)-symmetry in configuration space. The combined symmetry group G is a direct product of ℓ + 1 such factors, and its cotangent lift has an Ad*-equivariant momentum mapping. Regular reduction leads to the Rosochatius system on S ℓ, which has the same form as the Neumann system albeit for an additional effective potential. To understand how the reduced systems fit together we use singular reduction to construct an embedding of the reduced Poisson space T*S n/G into ℝ3ℓ+3. The global geometry is described, in particular the bundle structure that appears as a result of the superintegrability of the system. We show how the reduced Neumann system separates in elliptical-spherical co-ordinates. We derive the action variables and frequencies as complete hyperelliptic integrals of genus ℓ. Finally we prove a convexity result for the image of the Casimir mapping restricted to the energy surface.

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:269160
@article{bwmeta1.element.doi-10_2478_s11533-012-0085-8,
     author = {Holger Dullin and Heinz Han\ss mann},
     title = {The degenerate C. Neumann system I: symmetry reduction and convexity},
     journal = {Open Mathematics},
     volume = {10},
     year = {2012},
     pages = {1627-1654},
     zbl = {06137098},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0085-8}
}
Holger Dullin; Heinz Hanßmann. The degenerate C. Neumann system I: symmetry reduction and convexity. Open Mathematics, Tome 10 (2012) pp. 1627-1654. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0085-8/

[1] Bates L., Zou M., Degeneration of Hamiltonian monodromy cycles, Nonlinearity, 1993, 6(2), 313–335 http://dx.doi.org/10.1088/0951-7715/6/2/009 | Zbl 0784.58026

[2] Cushman R.H., Bates L.M., Global Aspects of Classical Integrable Systems, Birkhäuser, Basel, 1997 http://dx.doi.org/10.1007/978-3-0348-8891-2 | Zbl 0882.58023

[3] Davison C.M., Dullin H.R., Geodesic flow on three dimensional ellipsoids with equal semi-axes, Regul. Chaotic Dyn., 2007, 12(2), 172–197 http://dx.doi.org/10.1134/S1560354707020050 | Zbl 1229.37050

[4] Davison C.M., Dullin H.R., Bolsinov A.V., Geodesics on the ellipsoid and monodromy, J. Geom. Phys., 2007, 57(12), 2437–2454 http://dx.doi.org/10.1016/j.geomphys.2007.07.006 | Zbl 1148.53026

[5] Devaney R.L., Transversal homoclinic orbits in an integrable system, Amer. J. Math., 1978, 100(3), 631–642 http://dx.doi.org/10.2307/2373844 | Zbl 0406.58019

[6] Dullin H.R., Richter P.H., Veselov A.P., Waalkens H., Actions of the Neumann systems via Picard-Fuchs equations, Phys. D, 2001, 155(3–4), 159–183 http://dx.doi.org/10.1016/S0167-2789(01)00257-3 | Zbl 1001.70013

[7] Efstathiou K., Metamorphoses of Hamiltonian Systems with Symmetries, Lecture Notes in Math., 1864, Springer, Berlin, 2005

[8] Evans N.W., Superintegrability in classical mechanics, Phys. Rev. A, 1990, 41(10), 5666–5676 http://dx.doi.org/10.1103/PhysRevA.41.5666

[9] Fassò F., The Euler-Poinsot top: a non-commutatively integrable system without global action-angle coordinates, Z. Angew. Math. Phys., 1996, 47(6), 953–976 http://dx.doi.org/10.1007/BF00920045 | Zbl 0895.70005

[10] Fassò F., Superintegrable Hamiltonian systems: geometry and perturbations, In: Symmetry and Perturbation Theory, Cala Gonone, June, 2004, Acta Appl. Math., 2005, 87(1–3), 93–121

[11] Kibler M., Winternitz P., Periodicity and quasi-periodicity for super-integrable Hamiltonian systems, Phys. Lett. A, 1990, 147(7), 338–342 http://dx.doi.org/10.1016/0375-9601(90)90549-4

[12] Klein F., Sommerfeld A., Über die Theorie des Kreisels I-IV, Teubner, Leipzig, 1897, 1898, 1903, 1910 | Zbl 28.0658.04

[13] Knörrer H., Geodesics on quadrics and a mechanical problem of C. Neumann, J. Reine Angew. Math., 1982, 334, 69–78

[14] Knörrer H., Singular fibres of the momentum mapping for integrable Hamiltonian systems, J. Reine Angew. Math., 1985, 355, 67–107 | Zbl 0542.58005

[15] Liu Z., A note on the C. Neumann problem, Acta Math. Appl. Sinica (English Ser.), 1992, 8(1), 1–5 http://dx.doi.org/10.1007/BF02006067 | Zbl 0766.58029

[16] Macfarlane A.J., The quantum Neumann model with the potential of Rosochatius, Nuclear Phys. B, 1992, 386(2), 453–467 http://dx.doi.org/10.1016/0550-3213(92)90573-T

[17] Marsden J.E., Ratiu T.S., Introduction to Mechanics and Symmetry, Texts Appl. Math., 17, Springer, New York, 1994 | Zbl 0811.70002

[18] Marsden J., Weinstein A., Reduction of symplectic manifolds with symmetry, Rep. Mathematical Phys., 1974, 5(1), 121–130 http://dx.doi.org/10.1016/0034-4877(74)90021-4

[19] Miščenko A.S., Fomenko A.T., A generalized Liouville method for the integration of Hamiltonian systems, Funct. Anal. Appl., 1978, 12(2), 113–121 http://dx.doi.org/10.1007/BF01076254

[20] Moser J., Various aspects of integrable Hamiltonian systems, In: Dynamical Systems, Bressanone, June 19–27, 1978, Progr. Math., 8, 1980, Birkhäuser, Boston, 233–289

[21] Moser J., Geometry of quadrics and spectral theory, In: The Chern Symposium 1979, Berkeley, June, 1979, Springer, New York-Berlin, 1980, 147–188 http://dx.doi.org/10.1007/978-1-4613-8109-9_7

[22] Moser J., Integrable Hamiltonian Systems and Spectral Theory, Lezioni Fermiane, Scuola Normale Superiore, Pisa, 1983

[23] Nekhoroshev N.N., Action-angle variables and their generalizations, Trans. Moscow Math. Soc., 1974, 26, 180–198 | Zbl 0284.58009

[24] Neumann C., De problemate quodam mechanico, quod ad primam integralium ultraellipticorum classem revocatur, J. Reine Angew. Math., 1859, 56, 46–63 http://dx.doi.org/10.1515/crll.1859.56.46

[25] Raţiu T., The C. Neumann problem as a completely integrable system on an adjoint orbit, Trans. Amer. Math. Soc., 1981, 264(2), 321–329 | Zbl 0475.58006

[26] Rosochatius E., Über Bewegungen eines Punktes, Inaugural Dissertation, Unger, Göttingen, 1877 | Zbl 09.0651.02

[27] Sjamaar R., Convexity properties of the moment mapping re-examined, Adv. Math., 1998, 138(1), 46–91 http://dx.doi.org/10.1006/aima.1998.1739 | Zbl 0915.58036

[28] Veselov A.P., Two remarks about the connection of Jacobi and Neumann integrable systems, Math. Z., 1994, 216(3), 337–345 http://dx.doi.org/10.1007/BF02572325 | Zbl 0815.58011