Geometry of isotypic Kronecker webs
Wojciech Kryński
Open Mathematics, Tome 10 (2012), p. 1872-1888 / Harvested from The Polish Digital Mathematics Library

An isotypic Kronecker web is a family of corank m foliations {t}tP1 such that the curve of annihilators t ↦ (T x F t)⊥ ∈ Grm(T x* M) is a rational normal curve in the Grassmannian Grm(T x*M) at any point x ∈ M. For m = 1 we get Veronese webs introduced by I. Gelfand and I. Zakharevich [Gelfand I.M., Zakharevich I., Webs, Veronese curves, and bi-Hamiltonian systems, J. Funct. Anal., 1991, 99(1), 150–178]. In the present paper, we consider the problem of local classification of isotypic Kronecker webs and for a given web we construct a canonical connection. We compute the curvature of the connection in the case of webs of equal rank and corank. We also show the correspondence between Kronecker webs and systems of ODEs for which certain sets of differential invariants vanish. The equations are given up to contact transformations preserving independent variable. As a particular case, with m = 1 we obtain the correspondence between Veronese webs and ODEs.

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:269460
@article{bwmeta1.element.doi-10_2478_s11533-012-0081-z,
     author = {Wojciech Kry\'nski},
     title = {Geometry of isotypic Kronecker webs},
     journal = {Open Mathematics},
     volume = {10},
     year = {2012},
     pages = {1872-1888},
     zbl = {1275.53016},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0081-z}
}
Wojciech Kryński. Geometry of isotypic Kronecker webs. Open Mathematics, Tome 10 (2012) pp. 1872-1888. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0081-z/

[1] Akivis M.A., Goldberg V.V., Differential geometry of webs, In: Handbook of Differential Geometry, Vol. I, North-Holland, Amsterdam, 2000, 1-152, Chapter 1 | Zbl 0968.53001

[2] Chern S.-S., Sur la géométrie d’un système d’équations différentialles du second ordre, Bull. Sci. Math., 1939, 63, 206–212 | Zbl 65.1419.01

[3] Chern S., The geometry of higher path-spaces, J. Chinese Math. Soc., 1940, 2, 247–276 | Zbl 0063.00828

[4] Doubrov B., Komrakov B., Morimoto T., Equivalence of holonomic differential equations, Lobachevskii J. Math., 1999, 3, 39–71 | Zbl 0937.37051

[5] Dunajski M., Solitons, Instantons and Twistors, Oxf. Grad. Texts Math., 19, Oxford University Press, Oxford, 2010 | Zbl 1197.35209

[6] Dunajski M., Tod P., Paraconformal geometry of nth-order ODEs, and exotic holonomy in dimension four, J. Geom. Phys., 2006, 56(9), 1790–1809 http://dx.doi.org/10.1016/j.geomphys.2005.10.007 | Zbl 1096.53028

[7] Frittelli S., Kozameh C., Newman E.T., Differential geometry from differential equations, Commun. Math. Phys., 2001, 223(2), 383–408 http://dx.doi.org/10.1007/s002200100548 | Zbl 1027.53080

[8] Gamkrelidze R.V., Ed., Geometry. I, Encyclopaedia Math. Sci., 28, Springer, Berlin, 1991

[9] Gelfand I.M., Zakharevich I., Webs, Veronese curves, and bi-Hamiltonian systems, J. Funct. Anal., 1991, 99(1), 150–178 http://dx.doi.org/10.1016/0022-1236(91)90057-C

[10] Jakubczyk B., Krynski W., Vector fields with distributions and invariants of ODEs, preprint available at http://www.impan.pl/Preprints/p728.pdf | Zbl 1271.34041

[11] Krynski W., Paraconformal structures and differential equations, Differential Geom. Appl., 2010, 28(5), 523–531 http://dx.doi.org/10.1016/j.difgeo.2010.05.003 | Zbl 05772555

[12] Nagy P.T., Webs and curvature, In: Web Theory and Related Topics, Toulouse, December, 1996, World Scientific Publishing, River Edge, 2001, 48–91 http://dx.doi.org/10.1142/9789812794581_0003

[13] Panasyuk A., Veronese webs for bi-Hamiltonian structures of higher corank, In: Poisson Geometry, Warsaw, August 3–15, 1998, Banach Center Publ., 51, Polish Academy of Sciences, Warsaw, 2000, 251–261 | Zbl 0996.53053

[14] Panasyuk A., On integrability of generalized Veronese curves of distributions, Rep. Math. Phys., 2002, 50(3), 291–297 http://dx.doi.org/10.1016/S0034-4877(02)80059-3 | Zbl 1042.53008

[15] Turiel F.-J., C ∞-équivalence entre tissus de Veronese et structures bihamiltoniennes, C. R. Acad. Sci. Paris Sér. I Math., 1999, 328(10), 891–894 http://dx.doi.org/10.1016/S0764-4442(99)80292-4

[16] Turiel F.-J., C ∞-classification des germes de tissus de Veronese, C. R. Acad. Sci. Paris Sér. I Math., 1999, 329(5), 425–428 http://dx.doi.org/10.1016/S0764-4442(00)88618-8

[17] Zakharevich I., Kronecker webs, bihamiltonian structures, and the method of argument translation, Transform. Groups, 2001, 6(3), 267–300 http://dx.doi.org/10.1007/BF01263093 | Zbl 0994.37034

[18] Zakharevich I., Nonlinear wave equation, nonlinear Riemann problem and the twistor transform of Veronese webs, preprint available at http://arxiv.org/abs/math-ph/0006001