Space-like Weingarten surfaces in the three-dimensional Minkowski space and their natural partial differential equations
Georgi Ganchev ; Vesselka Mihova
Open Mathematics, Tome 11 (2013), p. 133-148 / Harvested from The Polish Digital Mathematics Library

On any space-like Weingarten surface in the three-dimensional Minkowski space we introduce locally natural principal parameters and prove that such a surface is determined uniquely up to motion by a special invariant function, which satisfies a natural non-linear partial differential equation. This result can be interpreted as a solution to the Lund-Regge reduction problem for space-like Weingarten surfaces in Minkowski space. We apply this theory to linear fractional space-like Weingarten surfaces and obtain the natural non-linear partial differential equations describing them. We obtain a characterization of space-like surfaces, whose curvatures satisfy a linear relation, by means of their natural partial differential equations. We obtain the ten natural PDE’s describing all linear fractional space-like Weingarten surfaces.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:269698
@article{bwmeta1.element.doi-10_2478_s11533-012-0044-4,
     author = {Georgi Ganchev and Vesselka Mihova},
     title = {Space-like Weingarten surfaces in the three-dimensional Minkowski space and their natural partial differential equations},
     journal = {Open Mathematics},
     volume = {11},
     year = {2013},
     pages = {133-148},
     zbl = {1273.53014},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0044-4}
}
Georgi Ganchev; Vesselka Mihova. Space-like Weingarten surfaces in the three-dimensional Minkowski space and their natural partial differential equations. Open Mathematics, Tome 11 (2013) pp. 133-148. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0044-4/

[1] Baran H., Marvan M., On integrability of Weingarten surfaces: a forgotten class, J. Phys. A, 2009, 42(40), #404007 http://dx.doi.org/10.1088/1751-8113/42/40/404007 | Zbl 1189.53006

[2] Baran H., Marvan M., Classification of integrable Weingarten surfaces possessing an sl(2)-valued zero curvature representation, Nonlinearity, 2010, 23(10), 2577–2597 http://dx.doi.org/10.1088/0951-7715/23/10/013 | Zbl 1204.53004

[3] Bianchi L., Lezioni di Geometria Differenziale, Spoerri, Pisa, 1894

[4] Bianchi L., Vorlesungen über Differentialgeometrie, Teubner, Leipzig, 1899 | Zbl 0193.49401

[5] Buyske S.G., Bäcklund transformations of linear Weingarten surfaces in Minkowski three-space, J. Math. Phys., 1994, 35(9), 4719–4724 http://dx.doi.org/10.1063/1.530809 | Zbl 0820.53033

[6] Cieśliński J., A generalized formula for integrable classes of surfaces in Lie algebras, J. Math. Phys., 1997, 38(8), 4255–4272 http://dx.doi.org/10.1063/1.532093 | Zbl 0893.53003

[7] Eisenhart L.P., A Treatise in the Differential Geometry of Curves and Surfaces, Ginn and Co., Boston-New York-Chicago-London, 1909 | Zbl 40.0657.01

[8] Fokas A.S., Gelfand I.M., Surfaces on Lie groups, on Lie algebras, and their integrability, Comm. Math. Phys., 1996, 177(1), 203–220 http://dx.doi.org/10.1007/BF02102436 | Zbl 0864.53003

[9] Fokas A.S., Gel’fand I.M., Finkel F., Liu Q.M., A formula for constructing infinitely many surfaces on Lie algebras and integrable equations, Selecta Math., 2000, 6(4), 347–375 http://dx.doi.org/10.1007/PL00001392

[10] Ganchev G., Mihova V., On the invariant theory of Weingarten surfaces in Euclidean space, J. Phys. A, 2010, 43(40), #405210 http://dx.doi.org/10.1088/1751-8113/43/40/405210 | Zbl 1201.53003

[11] Ganchev G., Mihova V., Natural PDE’s of linear fractional Weingarten surfaces in Euclidean space, preprint available at http://arxiv.org/abs/1105.3085 | Zbl 1201.53003

[12] Hu H.S., The construction of hyperbolic surfaces in 3-dimensional Minkowski space and sinh-Laplace equation, Acta Math. Sinica, 1985, 1(1), 79–86 http://dx.doi.org/10.1007/BF02560006 | Zbl 0594.53014

[13] Hu H., Darboux transformations between Δα = sinh α and Δα = sin α and the application to pseudo-spherical congruences in ℝ 12, Lett. Math. Phys., 1999, 48(2), 187–195 http://dx.doi.org/10.1023/A:1007583627973

[14] Lie S., Ueber Flächen, deren Krümmungsradien durch eine Relation verknüpft sind, Archiv for Mathematik og Naturvidenskab, 4, 1879, 507–512

[15] v. Lilienthal R., Bemerkung über diejenigen Flächen, bei denen die Differenz der Hauptkrümmungen constant ist, Acta Math., 1887, 11(1–4), 391–394 http://dx.doi.org/10.1007/BF02612331

[16] v. Lilienthal R., Encyklopädie der mathematischen Wissenschaften mit Einschluss ihrer Anwendungen, 3 - Geometrie, 3. Teil, D. Differentialgeometrie, 5. Besondere Flächen, Teubner, Leipzig, 1902/1903

[17] Lund F., Regge T., Unified approach to strings and vortices with soliton solutions, Phys. Rev. D, 1976, 14(6), 1524–1535 http://dx.doi.org/10.1103/PhysRevD.14.1524 | Zbl 0996.81509

[18] Milnor T.K., Surfaces in Minkowski 3-space on which H and K are linearly related, Michigan Math. J., 1983, 30(3), 309–315 http://dx.doi.org/10.1307/mmj/1029002907 | Zbl 0553.53032

[19] Ribaucour M., A note on the evolution of surfaces, C. R. Acad. Sci. Paris Sér., 1872, 64, 1399–1403 (in French) | Zbl 04.0370.01

[20] Sym A., Soliton surfaces and their applications (soliton geometry from spectral problems), In: Geometric Aspects of the Einstein Equations and Integrable Systems, Scheveningen, August 26–31, 1984, Lecture Notes in Phys., 239, Springer, Berlin-Heidelberg, 1985, 154–231 http://dx.doi.org/10.1007/3-540-16039-6_6

[21] Weingarten J., Ueber die Oberflächen, für welche einer der beiden Hauptkrümmungshalbmesser eine Funktion des anderen ist, J. Reine Angew. Math., 1863, 62, 160–173 http://dx.doi.org/10.1515/crll.1863.62.160

[22] Weingarten J., Ueber eine Eigenschaft der Flächen, bei denen der eine Hauptkrümmungsradius eine Funktion des anderen ist, J. Reine Angew. Math., 1888, 103, 184 | Zbl 20.0763.01

[23] Wu H., Weingarten surfaces and nonlinear partial differential equations, Ann. Global Anal. Geom., 1993, 11(1), 49–64 http://dx.doi.org/10.1007/BF00773364 | Zbl 0811.53006